Abstract: Thermal regulation is a fundamental process in controlling the intensity, spectrum distribution, and direction of thermal radiation, which holds significant scientific research value in energy conversion and sensing. However, traditional thermal radiation materials are constrained by inherent absorption characteristics, posing limitations on achieving tailor-made designs and controllable thermal radiation performance. In contrast, epsilon-near-zero(ENZ) materials exhibit remarkable electromagnetic response properties, including a low refractive index, strong dispersion, and electric field enhancement near specific wavelengths. Consequently, ENZ materials possess tremendous potential in regulating thermal radiation. This review summarizes the classification of ENZ materials in different infrared wavelengths and the mechanism of electric field enhancement of ENZ materials. Also, we discuss the structural design and latest progress of wideband, directional, dynamic and visible compatible infrared thermal radiation regulators based on ENZ materials in recent years. Finally, we propose the current challenges of ENZ-based thermal radiation regulators and the future development directions.
1 Li Y, Li W, Han T, et al. Nature Reviews Materials, 2021, 6(6), 488. 2 Yablonovitch E. Physical Review Letters, 1987, 58(20), 2059. 3 Li Y, Xiong C, Huang H, et al. Advanced Materials, 2021, 33(41), e2103054. 4 Shi M K, Shen M M, Guo X Y, et al. ACS Nano, 2021, 15(7), 11396. 5 Barbet G, Qiang B, Jin Y, et al. Advanced Optical Materials, 2023, 11(15), 2202786. 6 Choudhary S, Iqbal S, Karimi M, et al. ACS Photonics, 2023, 10(1), 162. 7 Kelley K P, Runnerstrom E L, Sachet E, et al. ACS Photonics, 2019, 6(5), 1139. 8 Caligiuri V, Palei M, Biffi G, et al. Nano Letters, 2019, 19(5), 3151. 9 Saha S, Ozlu M G, Chowdhury S N, et al. Advanced Materials, 2023, 35(34), 2109546. 10 Runnerstrom E L, Kelley K P, Sachet E, et al. ACS Photonics, 2017, 4(8), 1885. 11 Liberal I, Engheta N. Nature Photonics, 2017, 11(3), 149. 12 Alù A, Silveirinha M G, Salandrino A, et al. Physical Review B, 2007, 75(15), 155410. 13 Li Y, Zhang P, Liu Y, et al. Optics Communications, 2020, 472(6), 126015. 14 Smith E M, Chen J, Hendrickson J R, et al. Optical Materials Express, 2020, 10(10), 2439. 15 Deng J, Tang Y, Chen S, et al. Nano Letters, 2020, 20(7), 5421. 16 Subramania G, Fischer A J, Luk T S. Applied Physics Letters, 2012, 101(24), 241107. 17 Campione S, Brener I, Marquier F. Physical Review B, 2015, 91(12), 121408. 18 Khamh H, Sachet E, Kelly K, et al. Journal of Materials Chemistry C, 2018, 6(31), 8326. 19 Ying Y, Ma B, Yu J, et al. Laser & Photonics Reviews, 2022, 16(8), 2200018. 20 Hwang J S, Xu J, Raman A P. Advanced Materials, 2023, 35(39), 2302956. 21 Sun K, Xiao W, Ye S, et al. Advcanced Materials, 2020, 32(25), 2001534. 22 Niu X, Hu X, Chu S, et al. Advanced Optical Materials, 2018, 6(10), 1701292. 23 Liu X H, Wang P, Xiao C Y, et al. Advanced Functional Materials, 2023, 33(11), 2212068. 24 Zhu H, Gao M, Pang C, et al. Small Science, 2022, 2(4), 2100094. 25 Ma S, Yang D J, Ding S J, et al. Physical Review Letters, 2021, 126(17), 173902. 26 Lee N, Kim T, Lim J S, et al. ACS Applied Materials & Interfaces, 2019, 11(23), 21250. 27 Ji C, Lee K T, Xu T, et al. Advanced Optical Materials, 2017, 5(20), 1700368. 28 Li Z, Butun S, Aydin K. ACS Photonics, 2015, 2(2), 183. 29 Li H, Yuan L H, Zhou B, et al. Journal of Applied Physics, 2011, 110(1), 014909. 30 Mader S, Martin O J F. Optics Express, 2018, 26(21), 27089. 31 Hu S, Yang S, Liu Z, et al. The Journal of Physical Chemistry C, 2019, 123(22), 13856. 32 Zhou Y, Qin Z, Liang Z, et al. Light: Science & Applications, 2021, 10(1), 138. 33 Xiong J, Shen J, Gao Y, et al. Laser & Photonics Reviews, 2022, 17(3), 2100738. 34 Abdelatif G Y, Hameed M F O, Obayya S S A, et al. Journal of the Optical Society of America B, 2019, 36(10), 2889. 35 Ma P, Liu K, Huang G, et al. Optics Letters, 2022, 47(17), 4524. 36 Li J, Liu S, Wu S, et al. Photonic Sensors, 2022, 13(2), 230231. 37 Hendrickson J R, Vangala S, Dass C, et al. ACS Photonics, 2018, 5(3), 776. 38 Jiang H, Zhao Y, Ma H, et al. Applied Surface Science, 2022, 596(7), 153551. 39 Johns B. Nanophotonics, 2023, 12(16), 3301. 40 Dang P T, Le K Q, Lee J H, et al. Micromachines, 2019, 10(10), 673. 41 Li J, Liu S, Wu S, et al. Optics Express, 2023, 31(5), 8453. 42 Zhang Q, Lv Y, Wang Y, et al. Nature Communications, 2022, 13(1), 4874. 43 Yao P, Chen Z, Liu T, et al. Advanced Materials, 2022, 34(51), 2208236. 44 Xu J, Mandal J, Raman A P. Science, 2021, 372(6540), 393. 45 Cho J W, Lee Y J, Kim J H, et al. ACS Nano, 2023, 17(11), 10442. 46 Ying Y, Yu J, Qin B, et al. Laser & Photonics Reviews, 2023, 10, 2300407. 47 Dang D, Anopchenko A, Gurung S, et al. Journal of Materials Chemistry C, 2023. 48 Gui B, Wang J, Zhang L, et al. Optics Communications, 2022, 512(3), 128016. 49 Wang S, Jiang T, Meng Y, et al. Science, 2021, 374(6574), 1501. 50 Bhowmik B K, Bhowmik T, Pandey P K, et al. Optics & Laser Technology, 2023, 161(2), 109129. 51 Anopchenko A, Tao L, Arndt C, et al. ACS Photonics, 2018, 5(7), 2631. 52 Liu X, Kang J H, Yuan H, et al. ACS Photonics, 2018, 5(4), 1493. 53 Park J, Kang J H, Liu X G, et al. Science Advances, 2018, 4(12), 3163. 54 Park J, Kim S J, Sorger V J, et al. Nanophotonics, 2022, 11(6), 1117. 55 Zhou P, Zheng G, Zou X, et al. Plasmonics Ⅳ, 2019, 11194, 54. 56 Wu Y, Tan S, Zhao Y, et al. Progress in Materials Science, 2023, 135(4), 101088. 57 Lee N, Lim J S, Chang I, et al. International Journal of Heat and Mass Transfer, 2021, 173(4), 121173. 58 Wu Y, Luo J, Pu M, et al. Optics Express, 2022, 30(10), 17259. 59 Zhang L, Wang J, Lou J, et al. Journal of Materials Chemistry C, 2021, 9(42), 15018. 60 Chamoli S K, Li W. Optics Letters, 2023, 48(16), 4340.