Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23100001-7    https://doi.org/10.11896/cldb.23100001
  无机非金属及其复合材料 |
基于近零介电常数材料的热辐射调控研究进展
陈菊, 周涵*
上海交通大学金属基复合材料国家重点实验室,上海 200240
Research Progress of Thermal Regulation Based on Epsilon-near-zero Materials
CHEN Ju, ZHOU Han*
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 4057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热辐射调控基于热辐射特性和物质相互作用实现对热辐射强度、频谱分布和方向的调控,在能量转化、传感等领域具有广泛的科学研究价值。传统热辐射材料受限于材料本身辐射吸收特性而无法实现按需设计及可控热辐射性能。近零介电常数(ENZ)材料因其特定波长附近介电常数近零而具有低折射率、强色散和电场增强等独特电磁响应特性,在调控热辐射方面具有巨大潜力。本文介绍了不同红外波段的ENZ材料分类以及ENZ材料电场增强机理,并围绕研究工作重点论述了近几年基于ENZ材料的宽带、定向、动态及可见兼容红外热辐射调控器的结构设计及最新进展,最后总结了基于ENZ材料的热辐射调控器目前所面临的挑战并展望了其未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈菊
周涵
关键词:  近零介电常数  宽带热辐射  定向热辐射  动态热辐射  可见兼容红外    
Abstract: Thermal regulation is a fundamental process in controlling the intensity, spectrum distribution, and direction of thermal radiation, which holds significant scientific research value in energy conversion and sensing. However, traditional thermal radiation materials are constrained by inherent absorption characteristics, posing limitations on achieving tailor-made designs and controllable thermal radiation performance. In contrast, epsilon-near-zero(ENZ) materials exhibit remarkable electromagnetic response properties, including a low refractive index, strong dispersion, and electric field enhancement near specific wavelengths. Consequently, ENZ materials possess tremendous potential in regulating thermal radiation. This review summarizes the classification of ENZ materials in different infrared wavelengths and the mechanism of electric field enhancement of ENZ materials. Also, we discuss the structural design and latest progress of wideband, directional, dynamic and visible compatible infrared thermal radiation regulators based on ENZ materials in recent years. Finally, we propose the current challenges of ENZ-based thermal radiation regulators and the future development directions.
Key words:  epsilon-near-zero    wide-wavelength thermal radiation    directional thermal radiation    visible multifunctional infrared
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52172120)
通讯作者:  *周涵,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013年在日本国立物质材料研究所从事博士后工作,2013—2014年在德国马普所胶体与界面研究所任洪堡学者。近年来,在PNAS、Adv.Mater.、Adv.Funct.Mater.、ACS Nano等发表SCI文章70余篇,主要研究方向为仿生材料与智能材料、超材料、热调控材料。hanzhou_81@sjtu.edu.cn   
作者简介:  陈菊,2016年9月毕业于武汉理工大学,获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,在周涵教授的指导下进行研究。目前主要研究领域为热辐射调控超材料。
引用本文:    
陈菊, 周涵. 基于近零介电常数材料的热辐射调控研究进展[J]. 材料导报, 2024, 38(22): 23100001-7.
CHEN Ju, ZHOU Han. Research Progress of Thermal Regulation Based on Epsilon-near-zero Materials. Materials Reports, 2024, 38(22): 23100001-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100001  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23100001
1 Li Y, Li W, Han T, et al. Nature Reviews Materials, 2021, 6(6), 488.
2 Yablonovitch E. Physical Review Letters, 1987, 58(20), 2059.
3 Li Y, Xiong C, Huang H, et al. Advanced Materials, 2021, 33(41), e2103054.
4 Shi M K, Shen M M, Guo X Y, et al. ACS Nano, 2021, 15(7), 11396.
5 Barbet G, Qiang B, Jin Y, et al. Advanced Optical Materials, 2023, 11(15), 2202786.
6 Choudhary S, Iqbal S, Karimi M, et al. ACS Photonics, 2023, 10(1), 162.
7 Kelley K P, Runnerstrom E L, Sachet E, et al. ACS Photonics, 2019, 6(5), 1139.
8 Caligiuri V, Palei M, Biffi G, et al. Nano Letters, 2019, 19(5), 3151.
9 Saha S, Ozlu M G, Chowdhury S N, et al. Advanced Materials, 2023, 35(34), 2109546.
10 Runnerstrom E L, Kelley K P, Sachet E, et al. ACS Photonics, 2017, 4(8), 1885.
11 Liberal I, Engheta N. Nature Photonics, 2017, 11(3), 149.
12 Alù A, Silveirinha M G, Salandrino A, et al. Physical Review B, 2007, 75(15), 155410.
13 Li Y, Zhang P, Liu Y, et al. Optics Communications, 2020, 472(6), 126015.
14 Smith E M, Chen J, Hendrickson J R, et al. Optical Materials Express, 2020, 10(10), 2439.
15 Deng J, Tang Y, Chen S, et al. Nano Letters, 2020, 20(7), 5421.
16 Subramania G, Fischer A J, Luk T S. Applied Physics Letters, 2012, 101(24), 241107.
17 Campione S, Brener I, Marquier F. Physical Review B, 2015, 91(12), 121408.
18 Khamh H, Sachet E, Kelly K, et al. Journal of Materials Chemistry C, 2018, 6(31), 8326.
19 Ying Y, Ma B, Yu J, et al. Laser & Photonics Reviews, 2022, 16(8), 2200018.
20 Hwang J S, Xu J, Raman A P. Advanced Materials, 2023, 35(39), 2302956.
21 Sun K, Xiao W, Ye S, et al. Advcanced Materials, 2020, 32(25), 2001534.
22 Niu X, Hu X, Chu S, et al. Advanced Optical Materials, 2018, 6(10), 1701292.
23 Liu X H, Wang P, Xiao C Y, et al. Advanced Functional Materials, 2023, 33(11), 2212068.
24 Zhu H, Gao M, Pang C, et al. Small Science, 2022, 2(4), 2100094.
25 Ma S, Yang D J, Ding S J, et al. Physical Review Letters, 2021, 126(17), 173902.
26 Lee N, Kim T, Lim J S, et al. ACS Applied Materials & Interfaces, 2019, 11(23), 21250.
27 Ji C, Lee K T, Xu T, et al. Advanced Optical Materials, 2017, 5(20), 1700368.
28 Li Z, Butun S, Aydin K. ACS Photonics, 2015, 2(2), 183.
29 Li H, Yuan L H, Zhou B, et al. Journal of Applied Physics, 2011, 110(1), 014909.
30 Mader S, Martin O J F. Optics Express, 2018, 26(21), 27089.
31 Hu S, Yang S, Liu Z, et al. The Journal of Physical Chemistry C, 2019, 123(22), 13856.
32 Zhou Y, Qin Z, Liang Z, et al. Light: Science & Applications, 2021, 10(1), 138.
33 Xiong J, Shen J, Gao Y, et al. Laser & Photonics Reviews, 2022, 17(3), 2100738.
34 Abdelatif G Y, Hameed M F O, Obayya S S A, et al. Journal of the Optical Society of America B, 2019, 36(10), 2889.
35 Ma P, Liu K, Huang G, et al. Optics Letters, 2022, 47(17), 4524.
36 Li J, Liu S, Wu S, et al. Photonic Sensors, 2022, 13(2), 230231.
37 Hendrickson J R, Vangala S, Dass C, et al. ACS Photonics, 2018, 5(3), 776.
38 Jiang H, Zhao Y, Ma H, et al. Applied Surface Science, 2022, 596(7), 153551.
39 Johns B. Nanophotonics, 2023, 12(16), 3301.
40 Dang P T, Le K Q, Lee J H, et al. Micromachines, 2019, 10(10), 673.
41 Li J, Liu S, Wu S, et al. Optics Express, 2023, 31(5), 8453.
42 Zhang Q, Lv Y, Wang Y, et al. Nature Communications, 2022, 13(1), 4874.
43 Yao P, Chen Z, Liu T, et al. Advanced Materials, 2022, 34(51), 2208236.
44 Xu J, Mandal J, Raman A P. Science, 2021, 372(6540), 393.
45 Cho J W, Lee Y J, Kim J H, et al. ACS Nano, 2023, 17(11), 10442.
46 Ying Y, Yu J, Qin B, et al. Laser & Photonics Reviews, 2023, 10, 2300407.
47 Dang D, Anopchenko A, Gurung S, et al. Journal of Materials Chemistry C, 2023.
48 Gui B, Wang J, Zhang L, et al. Optics Communications, 2022, 512(3), 128016.
49 Wang S, Jiang T, Meng Y, et al. Science, 2021, 374(6574), 1501.
50 Bhowmik B K, Bhowmik T, Pandey P K, et al. Optics & Laser Technology, 2023, 161(2), 109129.
51 Anopchenko A, Tao L, Arndt C, et al. ACS Photonics, 2018, 5(7), 2631.
52 Liu X, Kang J H, Yuan H, et al. ACS Photonics, 2018, 5(4), 1493.
53 Park J, Kang J H, Liu X G, et al. Science Advances, 2018, 4(12), 3163.
54 Park J, Kim S J, Sorger V J, et al. Nanophotonics, 2022, 11(6), 1117.
55 Zhou P, Zheng G, Zou X, et al. Plasmonics Ⅳ, 2019, 11194, 54.
56 Wu Y, Tan S, Zhao Y, et al. Progress in Materials Science, 2023, 135(4), 101088.
57 Lee N, Lim J S, Chang I, et al. International Journal of Heat and Mass Transfer, 2021, 173(4), 121173.
58 Wu Y, Luo J, Pu M, et al. Optics Express, 2022, 30(10), 17259.
59 Zhang L, Wang J, Lou J, et al. Journal of Materials Chemistry C, 2021, 9(42), 15018.
60 Chamoli S K, Li W. Optics Letters, 2023, 48(16), 4340.
[1] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[2] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[3] 闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
[4] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[5] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[6] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[7] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[8] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[9] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[10] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[11] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[12] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[13] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[14] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[15] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed