Research Progress of AMO4 Based Proton Conductors Containing Isolated Tetrahedral Moieties
GENG Xinyue, HANG Gaoqing, OU Changliang, YANG Xiaoyan*
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
Abstract: AMO4(A=rare earth element, M=Nb, P, As, V, etc.) based oxides are good candidates for inorganic solid-state ion conductors due to their structures features with isolated MO4 tetrahedral moieties with rotation flexibility and great deformation, which facilitate oxygen and proton defects stabilization and ionic long-range migration. The inorganic solid-state ion conductors can be divided into oxygen ion conductors and proton conductors according to the charge carrier type. Compared with oxide ion conductors, proton conductors exhibit lower migration energy barrier. This paper firstly outlines the crystal structure, conductivity, and the effect of acceptor dopants on proton conductivity in AMO4-based compositions. As well as the proton defects stabilization and migration mechanism in part of AMO4structures. Then it summarizes the key factors affecting the conductivity, proton stabilization and migration in AMO4 based proton conductors, including cation size of A and M sites, distortion level of MO4 tetrahedron and cationic distance between adjacent MO4 tetrahedron. Finally, here prospects the future development direction of AMO4 based proton conductors.
1 Malavasi L, Fisher C A J, Islam M S. Chemical Society Reviews, 2010, 39(11), 4370. 2 Fop S. Journal of Materials Chemistry A, 2021, 9(35), 18836. 3 Yang X Y, Fernández-Carrión A J, Kuang X J. Chemical Reviews, 2023, 123(15), 9356. 4 Vignesh D, Rout E. Energy & Fuels, 2023, 37(5), 3428. 5 Alberti G, Casciola M. Solid State Ionics, 2001, 145(1), 3. 6 Balachandran U, Ma B, Maiya P S, et al. Solid State Ionics, 1998, 108(1), 363. 7 Norby T. Solid State Ionics, 1999, 125(1-4), 1. 8 He Y M, Cai J, Zhang L H, et al. Industrial & Engineering Chemistry Research, 2014, 53(14), 5905. 9 Takahashi T. Bulletin of Electrochemistry, 1995, 11(1-2), 1. 10 Fabbri E, Pergolesi D, Traversa E. Chemical Society Reviews, 2010, 39(11), 4355. 11 Chen R J, Qu W J, Guo X, et al. Materials Horizons, 2016, 3(6), 487. 12 Zhou L J, Xu J G, Allix M, et al. Chemical Record, 2020, 20(10), 1117. 13 Yang X Y, Zeng X L, Ming X, et al. Inorganic Chemistry Frontiers, 2022, 9(11), 2644. 14 Cheng J H, Bao W T, Han C L, et al. Journal of Power Sources, 2010, 195(7), 1849. 15 Keionis A, Kazlauskas S, Petrulionis D, et al. Solid State Ionics, 2015, 279, 25. 16 Kuang X J, Green M A, Niu H J, et al. Nature Materials, 2008, 7(6), 498. 17 Li M R, Kuang X, Chong S Y, et al. Angewandte Chemie-International Edition, 2010, 49(13), 2362. 18 Abram E J, Sinclair D C, West A R. Journal of Materials Chemistry, 2001, 11(8), 1978. 19 Leon-Reina L, Losilla E R, Martinez-Lara M, et al. Chemistry of Materials, 2005, 17(3), 596. 20 Tate M L, Blom D A, Avdeev M, et al. Advanced Functional Materials, 2017, 27(8), 1605625. 21 Liu W H, Geng S P, Zhang W D, et al. Inorganic Chemistry, 2021, 60(21), 16817. 22 Lacerda M, Irvine J T S, Glasser F P, et al. Nature, 1988, 332(6164), 525. 23 Palacios L, De La Torre A G, Bruque S, et al. Inorganic Chemistry, 2007, 46(10), 4167. 24 Teusner M, De Souza R A, Krause H, et al. Journal of Physical Chemistry C, 2015, 119(18), 9721. 25 Khan K, Tareen A K, Aslam M, et al. Progress in Solid State Chemistry, 2019, 54, 1. 26 Packer R J, Skinner S J. Advanced Materials, 2010, 22(14), 1613. 27 Yang X, Fernández-Carrión A J, Wang J, et al. Nature Communications, 2018, 9(1), 4484. 28 Li J, Pan F J, Geng S P, et al. Nature Communications, 2020, 11(1), 4751. 29 Fop S, McCombie K S, Wildman E J, et al. Nature Materials, 2020, 19(7), 752. 30 Yashima M, Tsujiguchi T, Sakuda Y, et al. Nature Communications, 2021, 12(1), 556. 31 Yasui Y, Tansho M, Fujii K, et al. Nature Communications, 2023, 14(1), 2337. 32 Kendrick E, Kendrick J, Knight K S, et al. Nature Materials, 2007, 6(11), 871. 33 Hamao N, Kitamura N, Itoh T, et al. Solid State Ionics, 2013, 253, 123. 34 Iwahara H, Yajima T, Hibino T, et al. Solid State Ionics, 1993, 61(1), 65. 35 Iwahara H, Uchida H, Ono K, et al. Journal of the Electrochemical Society, 1988, 135(2), 529. 36 Kreuer K D. Annual Review of Materials Research, 2003, 33(1), 333. 37 Oishi M, Akoshima S, Yashiro K, et al. Solid State Ionics, 2008, 179(39), 2240. 38 Murakami T, Hester J R, Yashima M. Journal of the American Chemical Society, 2020, 142(27), 11653. 39 Li S, Schonberger F, Slater P. Chemical Communications, 2003(21), 2694. 40 Jalarvo N, Gourdon O, Bi Z, et al. Chemistry of Materials, 2013, 25(14), 2741. 41 Fop S, Dawson J A, Tawse D N, et al. Inorganic Chemistry, 2022, 34(18), 8190. 42 Haugsrud R, Norby T. Nature Materials, 2006, 5(3), 193. 43 Norby T, Christiansen N. Solid State Ionics, 1995, 77, 240. 44 Bjorheim T S, Norby T, Haugsrud R. Journal of Materials Chemistry, 2012, 22(4), 1652. 45 Huse M, Norby T, Haugsrud R. Journal of the Electrochemical Society, 2011, 158(8), 867. 46 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751. 47 Huse M, Skilbred A W B, Karlsson M, et al. Journal of Solid State Chemistry, 2012, 187, 27. 48 Fjeld H, Kepaptsoglou D M, Haugsrud R, et al. Solid State Ionics, 2010, 181(3-4), 104. 49 Cao Y, Tan Y, Yan D, et al. Solid State Ionics, 2015, 278, 152. 50 Mielewczyk-Gryn A, Wachowski S, Zagórski K, et al. Ceramics International, 2015, 41(6), 7847. 51 Dzierzgowski K, Wachowski S, Gojtowska W, et al. Ceramics International, 2018, 44(7), 8210. 52 Dzierzgowski K, Wachowski S, Gazda M, et al. Crystals, 2019, 9(2), 91. 53 Solís C, Serra J M. Solid State Ionics, 2011, 190(1), 38. 54 Cao Y, Chi B, Pu J, et al. Journal of the European Ceramic Society, 2014, 34(8), 1981. 55 Huse M, Norby T, Haugsrud R. International Journal of Hydrogen Energy, 2012, 37(9), 8004. 56 Cao Y, Duan N Q, Wang X, et al. Journal of the European Ceramic Society, 2015, 35(6), 1979. 57 Wachowski S, Mielewczyk-Gryn A, Zagorski K, et al. Journal of Materials Chemistry A, 2016, 4(30), 11696. 58 Lv Y, Geng S P, Wei T J, et al. Physica Status Solidi B-Basic Solid State Physics, 2020, 257(9), 2000110. 59 Chi X W, Wen Z Y, Zhang J C, et al. Solid State Ionics, 2014, 268, 326. 60 Ivanova M, Ricote S, Meulenberg W A, et al. Solid State Ionics, 2012, 213, 45. 61 BrandÃo A D, Nasani N, Yaremchenko A A, et al. International Journal of Hydrogen Energy, 2018, 43(40), 18682. 62 Li M M, Wu R P, Zhu L, et al. Ceramics International, 2019, 45(1), 573. 63 Haugsrud R, Norby T. Solid State Ionics, 2006, 177(13-14), 1129. 64 Mather G C, Fishe C A J, Islam M S. Chemistry of Materials, 2010, 22(21), 5912. 65 Cao Y, Duan N Q, Yan D, et al. International Journal of Hydrogen Energy, 2016, 41(45), 20633. 66 Fjeld H, Toyoura K, Haugsrud R, et al. Physical Chemistry Chemical Physics, 2010, 12(35), 10313. 67 Gallinia S, Hänselb M, Norbyb T, et al. Solid State Ionics, 2003, 162, 167. 68 Amezawa K, Maekawa H, Tomii Y, et al. Solid State Ionics, 2001, 145(1-4), 233. 69 Kitamura N, Amezawa K, Tomii Y, et al. Solid State Ionics, 2004, 175(1-4), 563. 70 Kitamura N, Amezawa K, Tomii Y, et al. Solid State Ionics, 2005, 176(39-40), 2875. 71 Amezawa K, Tomii Y, Yamamoto N. Solid State Ionics, 2005, 176(1-2), 135. 72 Amezawa K, Ratkje S K. Denki Kagaku, 1996, 64(6), 688. 73 Amezowa K, Kjelsfrup S, Norby T, et al. Journal of the Electrochemical Society, 1998, 145(10), 3313. 74 Phadke S, Nino J C, Islam M S. Journal of Materials Chemistry, 2012, 22(48), 25388. 75 Winiarz P, Dzierzgowski K, Mielewczyk-Gryn A, et al. Chemistry-A European Journal, 2021, 27(17), 5393. 76 Yu R, De Jonghe L C. Journal of Physical Chemistry C, 2007, 111(29), 11003. 77 Toyoura K, Hatada N, Nose Y, et al. The Journal of Physical Chemistry C, 2012, 116(36), 19117. 78 Toyoura K, Matsunaga K. Journal of Physical Chemistry C, 2013, 117(35), 18006. 79 Haugsrud R, Norby T. Journal of the American Ceramic Society, 2007, 90(4), 1116. 80 Vasylenko A, Gamon J, Duff B B, et al. Nature Communications, 2021, 12(1), 5561. 81 Zhang S, Ma J, Dong S M, et al. Electrochemical Energy Reviews, 2023, 6(1), 4. 82 Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Chemical Reviews, 2022, 122(12), 10899. 83 Matsubara M, Suzumura A, Ohba N, et al. Communications Materials, 2020, 1(1), 5. 84 Coduri M, Karlsson M, Malavasi L. Journal of Materials Chemistry, 2022, 10(10), 5082.