Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23100129-7    https://doi.org/10.11896/cldb.23100129
  无机非金属及其复合材料 |
含孤立四面体基元的AMO4型质子导体的研究进展
耿鑫悦, 杭高庆, 欧长良, 杨小燕*
桂林理工大学材料科学与工程学院,广西光电材料与器件重点实验室,广西 桂林 541004
Research Progress of AMO4 Based Proton Conductors Containing Isolated Tetrahedral Moieties
GENG Xinyue, HANG Gaoqing, OU Changliang, YANG Xiaoyan*
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 2241KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AMO4(A=稀土元素,M=Nb,P,As,V…)氧化物因结构中含有灵活旋转和易变形的孤立MO4四面体结构基元,有利于氧和质子的稳定和离子的长程迁移,是良好的无机固态离子导体候选体系。根据载流子种类可将无机固态离子导体主要分为氧离子导体和质子导体,与氧离子导体相比,质子导体具有较低的迁移能垒。本文首先概述了AMO4型质子导体的晶体结构、导电性与受体掺杂剂对质子导电性的影响,以及部分结构中质子缺陷的稳定形式与离子迁移机制;然后总结了影响AMO4型质子导体导电性、质子稳定及迁移的关键因素,包括A位和M位阳离子尺寸、MO4四面体的畸变程度和相邻MO4四面体氧离子之间的距离等;最后展望了AMO4型质子导体未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿鑫悦
杭高庆
欧长良
杨小燕
关键词:  AMO4型质子导体  孤立四面体  缺陷稳定  离子迁移机制  构效关系    
Abstract: AMO4(A=rare earth element, M=Nb, P, As, V, etc.) based oxides are good candidates for inorganic solid-state ion conductors due to their structures features with isolated MO4 tetrahedral moieties with rotation flexibility and great deformation, which facilitate oxygen and proton defects stabilization and ionic long-range migration. The inorganic solid-state ion conductors can be divided into oxygen ion conductors and proton conductors according to the charge carrier type. Compared with oxide ion conductors, proton conductors exhibit lower migration energy barrier. This paper firstly outlines the crystal structure, conductivity, and the effect of acceptor dopants on proton conductivity in AMO4-based compositions. As well as the proton defects stabilization and migration mechanism in part of AMO4structures. Then it summarizes the key factors affecting the conductivity, proton stabilization and migration in AMO4 based proton conductors, including cation size of A and M sites, distortion level of MO4 tetrahedron and cationic distance between adjacent MO4 tetrahedron. Finally, here prospects the future development direction of AMO4 based proton conductors.
Key words:  AMO4-type proton conductors    isolated tetrahedron    defect stabilization    ion migration mechanism    structure-activity relationship
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TQ152  
基金资助: 广西自然科学基金(2020GXNSFAA297050);国家自然科学基金(22005073;22365011);广西光电材料与器件重点实验室开放基金(20AA-1);桂林理工大学科研启动金(2017011)
通讯作者:  *杨小燕,桂林理工大学材料科学与工程学院副研究员、硕士研究生导师。2013年重庆文理学院化学专业本科毕业,2016年桂林理工大学材料科学与工程学院材料科学与工程专业硕士毕业,2021年桂林理工大学材料科学与工程专业博士毕业,2022—2023年在北京大学化学与分子工程学院作访问学者。研究方向为无机材料与固体化学,从事固态氧化物燃料电池关键材料、微波介质陶瓷和锂/钠阳离子导体等无机功能材料的构效关系研究。发表高水平SCI学术论文21篇,包括Chemical Reviews、Nature Communications、Chemistry of Materials、Inorganic Chemistry Frontiers等。yangxy@glut.edu.cn   
作者简介:  耿鑫悦,2021年6月于德州学院获得工学学士学位。现为桂林理工大学材料科学与工程学院硕士研究生,在杨小燕副研究员的指导下进行研究。目前主要研究领域为无机功能材料。
引用本文:    
耿鑫悦, 杭高庆, 欧长良, 杨小燕. 含孤立四面体基元的AMO4型质子导体的研究进展[J]. 材料导报, 2024, 38(22): 23100129-7.
GENG Xinyue, HANG Gaoqing, OU Changliang, YANG Xiaoyan. Research Progress of AMO4 Based Proton Conductors Containing Isolated Tetrahedral Moieties. Materials Reports, 2024, 38(22): 23100129-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100129  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23100129
1 Malavasi L, Fisher C A J, Islam M S. Chemical Society Reviews, 2010, 39(11), 4370.
2 Fop S. Journal of Materials Chemistry A, 2021, 9(35), 18836.
3 Yang X Y, Fernández-Carrión A J, Kuang X J. Chemical Reviews, 2023, 123(15), 9356.
4 Vignesh D, Rout E. Energy & Fuels, 2023, 37(5), 3428.
5 Alberti G, Casciola M. Solid State Ionics, 2001, 145(1), 3.
6 Balachandran U, Ma B, Maiya P S, et al. Solid State Ionics, 1998, 108(1), 363.
7 Norby T. Solid State Ionics, 1999, 125(1-4), 1.
8 He Y M, Cai J, Zhang L H, et al. Industrial & Engineering Chemistry Research, 2014, 53(14), 5905.
9 Takahashi T. Bulletin of Electrochemistry, 1995, 11(1-2), 1.
10 Fabbri E, Pergolesi D, Traversa E. Chemical Society Reviews, 2010, 39(11), 4355.
11 Chen R J, Qu W J, Guo X, et al. Materials Horizons, 2016, 3(6), 487.
12 Zhou L J, Xu J G, Allix M, et al. Chemical Record, 2020, 20(10), 1117.
13 Yang X Y, Zeng X L, Ming X, et al. Inorganic Chemistry Frontiers, 2022, 9(11), 2644.
14 Cheng J H, Bao W T, Han C L, et al. Journal of Power Sources, 2010, 195(7), 1849.
15 Kežionis A, Kazlauskas S, Petrulionis D, et al. Solid State Ionics, 2015, 279, 25.
16 Kuang X J, Green M A, Niu H J, et al. Nature Materials, 2008, 7(6), 498.
17 Li M R, Kuang X, Chong S Y, et al. Angewandte Chemie-International Edition, 2010, 49(13), 2362.
18 Abram E J, Sinclair D C, West A R. Journal of Materials Chemistry, 2001, 11(8), 1978.
19 Leon-Reina L, Losilla E R, Martinez-Lara M, et al. Chemistry of Materials, 2005, 17(3), 596.
20 Tate M L, Blom D A, Avdeev M, et al. Advanced Functional Materials, 2017, 27(8), 1605625.
21 Liu W H, Geng S P, Zhang W D, et al. Inorganic Chemistry, 2021, 60(21), 16817.
22 Lacerda M, Irvine J T S, Glasser F P, et al. Nature, 1988, 332(6164), 525.
23 Palacios L, De La Torre A G, Bruque S, et al. Inorganic Chemistry, 2007, 46(10), 4167.
24 Teusner M, De Souza R A, Krause H, et al. Journal of Physical Chemistry C, 2015, 119(18), 9721.
25 Khan K, Tareen A K, Aslam M, et al. Progress in Solid State Chemistry, 2019, 54, 1.
26 Packer R J, Skinner S J. Advanced Materials, 2010, 22(14), 1613.
27 Yang X, Fernández-Carrión A J, Wang J, et al. Nature Communications, 2018, 9(1), 4484.
28 Li J, Pan F J, Geng S P, et al. Nature Communications, 2020, 11(1), 4751.
29 Fop S, McCombie K S, Wildman E J, et al. Nature Materials, 2020, 19(7), 752.
30 Yashima M, Tsujiguchi T, Sakuda Y, et al. Nature Communications, 2021, 12(1), 556.
31 Yasui Y, Tansho M, Fujii K, et al. Nature Communications, 2023, 14(1), 2337.
32 Kendrick E, Kendrick J, Knight K S, et al. Nature Materials, 2007, 6(11), 871.
33 Hamao N, Kitamura N, Itoh T, et al. Solid State Ionics, 2013, 253, 123.
34 Iwahara H, Yajima T, Hibino T, et al. Solid State Ionics, 1993, 61(1), 65.
35 Iwahara H, Uchida H, Ono K, et al. Journal of the Electrochemical Society, 1988, 135(2), 529.
36 Kreuer K D. Annual Review of Materials Research, 2003, 33(1), 333.
37 Oishi M, Akoshima S, Yashiro K, et al. Solid State Ionics, 2008, 179(39), 2240.
38 Murakami T, Hester J R, Yashima M. Journal of the American Chemical Society, 2020, 142(27), 11653.
39 Li S, Schonberger F, Slater P. Chemical Communications, 2003(21), 2694.
40 Jalarvo N, Gourdon O, Bi Z, et al. Chemistry of Materials, 2013, 25(14), 2741.
41 Fop S, Dawson J A, Tawse D N, et al. Inorganic Chemistry, 2022, 34(18), 8190.
42 Haugsrud R, Norby T. Nature Materials, 2006, 5(3), 193.
43 Norby T, Christiansen N. Solid State Ionics, 1995, 77, 240.
44 Bjorheim T S, Norby T, Haugsrud R. Journal of Materials Chemistry, 2012, 22(4), 1652.
45 Huse M, Norby T, Haugsrud R. Journal of the Electrochemical Society, 2011, 158(8), 867.
46 Shannon R D. Acta Crystallographica Section A, 1976, 32(5), 751.
47 Huse M, Skilbred A W B, Karlsson M, et al. Journal of Solid State Chemistry, 2012, 187, 27.
48 Fjeld H, Kepaptsoglou D M, Haugsrud R, et al. Solid State Ionics, 2010, 181(3-4), 104.
49 Cao Y, Tan Y, Yan D, et al. Solid State Ionics, 2015, 278, 152.
50 Mielewczyk-Gryn A, Wachowski S, Zagórski K, et al. Ceramics International, 2015, 41(6), 7847.
51 Dzierzgowski K, Wachowski S, Gojtowska W, et al. Ceramics International, 2018, 44(7), 8210.
52 Dzierzgowski K, Wachowski S, Gazda M, et al. Crystals, 2019, 9(2), 91.
53 Solís C, Serra J M. Solid State Ionics, 2011, 190(1), 38.
54 Cao Y, Chi B, Pu J, et al. Journal of the European Ceramic Society, 2014, 34(8), 1981.
55 Huse M, Norby T, Haugsrud R. International Journal of Hydrogen Energy, 2012, 37(9), 8004.
56 Cao Y, Duan N Q, Wang X, et al. Journal of the European Ceramic Society, 2015, 35(6), 1979.
57 Wachowski S, Mielewczyk-Gryn A, Zagorski K, et al. Journal of Materials Chemistry A, 2016, 4(30), 11696.
58 Lv Y, Geng S P, Wei T J, et al. Physica Status Solidi B-Basic Solid State Physics, 2020, 257(9), 2000110.
59 Chi X W, Wen Z Y, Zhang J C, et al. Solid State Ionics, 2014, 268, 326.
60 Ivanova M, Ricote S, Meulenberg W A, et al. Solid State Ionics, 2012, 213, 45.
61 BrandÃo A D, Nasani N, Yaremchenko A A, et al. International Journal of Hydrogen Energy, 2018, 43(40), 18682.
62 Li M M, Wu R P, Zhu L, et al. Ceramics International, 2019, 45(1), 573.
63 Haugsrud R, Norby T. Solid State Ionics, 2006, 177(13-14), 1129.
64 Mather G C, Fishe C A J, Islam M S. Chemistry of Materials, 2010, 22(21), 5912.
65 Cao Y, Duan N Q, Yan D, et al. International Journal of Hydrogen Energy, 2016, 41(45), 20633.
66 Fjeld H, Toyoura K, Haugsrud R, et al. Physical Chemistry Chemical Physics, 2010, 12(35), 10313.
67 Gallinia S, Hänselb M, Norbyb T, et al. Solid State Ionics, 2003, 162, 167.
68 Amezawa K, Maekawa H, Tomii Y, et al. Solid State Ionics, 2001, 145(1-4), 233.
69 Kitamura N, Amezawa K, Tomii Y, et al. Solid State Ionics, 2004, 175(1-4), 563.
70 Kitamura N, Amezawa K, Tomii Y, et al. Solid State Ionics, 2005, 176(39-40), 2875.
71 Amezawa K, Tomii Y, Yamamoto N. Solid State Ionics, 2005, 176(1-2), 135.
72 Amezawa K, Ratkje S K. Denki Kagaku, 1996, 64(6), 688.
73 Amezowa K, Kjelsfrup S, Norby T, et al. Journal of the Electrochemical Society, 1998, 145(10), 3313.
74 Phadke S, Nino J C, Islam M S. Journal of Materials Chemistry, 2012, 22(48), 25388.
75 Winiarz P, Dzierzgowski K, Mielewczyk-Gryn A, et al. Chemistry-A European Journal, 2021, 27(17), 5393.
76 Yu R, De Jonghe L C. Journal of Physical Chemistry C, 2007, 111(29), 11003.
77 Toyoura K, Hatada N, Nose Y, et al. The Journal of Physical Chemistry C, 2012, 116(36), 19117.
78 Toyoura K, Matsunaga K. Journal of Physical Chemistry C, 2013, 117(35), 18006.
79 Haugsrud R, Norby T. Journal of the American Ceramic Society, 2007, 90(4), 1116.
80 Vasylenko A, Gamon J, Duff B B, et al. Nature Communications, 2021, 12(1), 5561.
81 Zhang S, Ma J, Dong S M, et al. Electrochemical Energy Reviews, 2023, 6(1), 4.
82 Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Chemical Reviews, 2022, 122(12), 10899.
83 Matsubara M, Suzumura A, Ohba N, et al. Communications Materials, 2020, 1(1), 5.
84 Coduri M, Karlsson M, Malavasi L. Journal of Materials Chemistry, 2022, 10(10), 5082.
[1] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[2] 秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
[3] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[4] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[5] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[6] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed