Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24010244-8    https://doi.org/10.11896/cldb.24010244
  无机非金属及其复合材料 |
复合早强剂对掺石灰石粉砂浆强度和水化作用的影响
钟新宇, 赖俊英*, 阮少钦, 钱晓倩, 钱匡亮
浙江大学建筑工程学院,杭州 310058
Effect of Composite Early Strength Agent on Strength and Hydration of Mortar with Limestone Powder
ZHONG Xinyu, LAI Junying*, RUAN Shaoqin, QIAN Xiaoqian, QIAN Kuangliang
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 21981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石粉作为工业生产的副产品,每年的产生量远大于消耗量,过多的石粉会造成严重的环境问题。在砂浆中掺入石粉可以提高石粉的利用率,但过量石粉的掺入会降低砂浆强度。掺入早强剂对掺石灰石粉砂浆早期强度的形成有促进作用,但单一类别的早强剂掺入对砂浆早期强度的提升幅度有限。基于此,本工作研究掺加复合早强剂DEIPA-Na2SO4、DEIPA-Al2(SO4)3、DEIPA-Al2(SO4)3-Na2SO4对掺石灰石粉砂浆强度及水化作用的影响。通过水化热、X射线衍射、热重分析、压汞法以及扫描电镜等方法进行测试,结果表明:三种复合早强剂的添加均能提高掺石灰石粉砂浆的水化温度,促进早期水化产物的形成,降低孔隙率,大大提升砂浆的早期抗压强度。但DEIPA-Na2SO4和DEIPA-Al2(SO4)3-Na2SO4的添加会对砂浆后期强度产生不利影响,而DEIPA-Al2(SO4)3的添加对其后期强度依然有促进效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟新宇
赖俊英
阮少钦
钱晓倩
钱匡亮
关键词:  复合早强剂  石灰石粉  砂浆  水化作用  抗压强度    
Abstract: As a by-product of industrial production, the annual production of stone powder is much greater than the consumption, and too much stone powder can cause serious environmental problems. The mortar with a large amount of stone powder can improve the utilization rate of stone powder, but the corresponding strength decreases. The addition of single early strength agent in mortar has a limited increase in early strength. In this work, the effects of three kinds of composite early strength agents DEIPA-Na2SO4, DEIPA-Al2(SO4)3, DEIPA-Al2(SO4)3)-Na2SO4 on strength and hydration of mortar with limestone powder were studied. The results by hydration heat, X-ray diffraction, differential thermogravimetric analysis, mercury intrusion porosimetry and scanning electron show that these three composite early strength agents can increase the hydration temperature, promote the formation of early hydration products, reduce porosity, and greatly improve the early compressive strength of mortar with limestone powder, but DEIPA-Na2SO4 and DEIPA-Al2(SO4)3-Na2SO4 have a negative impact on the long time strength, while DEIPA-Al2(SO4)3 still has a promoting effect.
Key words:  composite early strength agent    limestone powder    mortar    hydration    compressive strength
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU528  
基金资助: 广西科技计划项目(桂科AB22036002)
通讯作者:  *赖俊英,浙江大学建筑工程学院副教授、硕士研究生导师。主要从事建筑材料与功能材料的科研工作。junyinglai@zju.edu.cn   
作者简介:  钟新宇,浙江大学建筑工程学院硕士研究生,在赖俊英副教授的指导下进行研究。目前主要研究领域为新型建筑材料。
引用本文:    
钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
ZHONG Xinyu, LAI Junying, RUAN Shaoqin, QIAN Xiaoqian, QIAN Kuangliang. Effect of Composite Early Strength Agent on Strength and Hydration of Mortar with Limestone Powder. Materials Reports, 2025, 39(5): 24010244-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010244  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24010244
1 Wang X H, Hou X, Gan L, et al. Materials Reports, 2022, 36(16), 147 (in Chinese).
王旭昊, 侯鑫, 甘珑, 等. 材料导报, 2022, 36(16), 147.
2 Lu X, Wang S, Li C, et al. Ceramics-Silikáty, 2018, 62, 233.
3 Diab A M, Abd Elmoaty M, Aly A A. Alexandria Engineering Journal, 2016, 55(2), 1465.
4 Sua-Iam G, Makul N. Construction and Building Materials, 2013, 38, 455.
5 Lin J Y, Jiang Y, Wu X Y, et al. Journal of the Chinese Ceramic Society, 2018, 37(12), 3842(in Chinese).
林基泳, 蒋勇, 吴兴颜, 等. 硅酸盐通报, 2018, 37(12), 3842.
6 Song S M, Huang J S. Concrete, 2021(10), 143(in Chinese).
宋少民, 黄京胜. 混凝土, 2021(10), 143.
7 Bonavetti V, Donza H, Menendez G, et al. Cement and Concrete Research, 2003, 33(6), 865.
8 Wang Y, Sun L, Liu S, et al. Coatings, 2022, 12(10), 1485.
9 Pang C M, Tang Z Y, Yang Z Y, et al. Materials Reports, 2023, 37(9), 80(in Chinese).
庞超明, 唐志远, 杨志远, 等. 材料导报, 2023, 37(9), 80.
10 Zhou H, Qi X, Ma C, et al. Case Studies in Construction Materials, 2023, 18, e01768.
11 Ren G, Tian Z, Wu J, et al. Construction and Building Materials, 2021, 304, 124642.
12 Chen T, Ren B, Wang Z, et al. Case Studies in Construction Materials, 2022, 17, e01419.
13 Hu J. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1251.
14 Bullard J W, Jennings H M, Livingston R A, et al. Cement and Concrete Research, 2011, 41, 1208.
15 Zhu P F, Yu Y, Shi Y R, et al. Journal of Yangtze River Scientific Research Institute, 2024, 41(1), 183 (in Chinese).
朱鹏飞, 余熠, 石研然, 等. 长江科学院院报, 2024, 41(1), 183.
16 Yang R, He T, Guan M, et al. Construction and Building Materials, 2020, 234, 117334.
17 Liu X, Ma B, Tan H, et al. Construction and Building Materials, 2020, 232, 117179.
18 Li H, Xue Z, Liang G, et al. Construction and Building Materials, 2021, 266, 121096.
19 Campos A, Lopez C M, Blanco A, et al. Construction and Building Materials, 2018, 166, 668.
20 Wang Y, Shi C, Lei L, et al. Cement and Concrete Composites, 2022, 129, 104485.
21 Ma R, Zhang L, Song Y, et al. Journal of Cleaner Production, 2023, 390, 136190.
22 Yang S, Wang J, Cui S, et al. Construction and Building Materials, 2017, 131, 655.
23 Zhou L L, Mei J P, Li H N, et al. Journal of the Chinese Ceramic Society, 2022, 41(9), 3154(in Chinese).
周兰兰, 梅军鹏, 李海南, 等. 硅酸盐通报, 2022, 41(9), 3154.
24 Wang Y, Lei L, Hu X, et al. Cement and Concrete Research, 2022, 162, 106999.
[1] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[4] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[7] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[8] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[9] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[10] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[11] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[12] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[15] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed