Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020088-7    https://doi.org/10.11896/cldb.24020088
  无机非金属及其复合材料 |
铸余渣固化工程渣土再生路基填料的性能与机制
王竟宇1, 詹良通1,*, 梁腾2, 陈萍3
1 浙江大学岩土工程研究所,软弱土与环境土工教育部重点实验室,杭州 310058
2 浙江大学超重力研究中心,杭州 310058
3 浙江理工大学建筑工程学院,杭州 310018
Performance and Mechanism of Stabilizing Excavated Soil into Subgrade Fills by Using Ladle Furnace Slag
WANG Jingyu1, ZHAN Liangtong1,*, LIANG Teng2, CHEN Ping3
1 MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Institute of Geotechnical Engineering, Zhejiang University,Hangzhou 310058, China
2 Center for Hypergravity Experimental and Interdisplinary Research, Zhejiang University, Hangzhou 310058, China
3 School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 12802KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为降低工程渣土再生路基填料的碳排放与成本,并提高工业固废资源化利用率,以铸余渣(单一或协同硅酸钠)为主要材料,固化工程渣土制备路基填料。试验结果显示:铸余渣相较水泥可更快将渣土脱水,并团聚渣土为加州承载比大于8%(路基在一般水文和荷载条件下的规范建议值)的填料;填料微观上可见不同发育程度的硅(铝)酸盐水化产物,但有较多孔隙,故压实填料的承载力主要依赖铸余渣颗粒的联锁效应与填料压硬性。协同硅酸钠后,渣土脱水进一步加快,填料颗粒级配与稳定性改善;硅酸钠刺激铸余渣中的硅酸二钙结晶破坏并水化为硅铝酸盐胶结和包裹颗粒,填料微观结构致密,压实后的加州承载比提高,7 d饱和无侧限抗压强度超过1 MPa;由于硅酸钠易转化为具有吸湿和膨胀性的NaHSi2O5·3H2O反应凝胶,其过量掺加后会导致压实填料在高湿度下开裂,强度降低。根据试验结果和填料使用场景推荐了两种配合比,用于一般水文和荷载条件时,固化剂为渣土湿重的4.5%~6%铸余渣、3%生石灰、3%粉煤灰;在填料需要更佳水稳性和承载能力时可掺入0.2%~0.3%硅酸钠。研究所提出的填料制备方法及建议的配合比可实现工程渣土与工业固废协同处置,并降低工程建设的碳排放与成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王竟宇
詹良通
梁腾
陈萍
关键词:  铸余渣  工程渣土  路基填料  固化土  硅酸钠    
Abstract: In order to reduce the carbon emissions and costs of stabilizing excavated soil into subgrade fills, and improve the resource recovery of industrial solid waste, ladle furnace slag (single or cooperation with sodium silicate) was selected as the predominant material to stabilize excavated soil to manufacture subgrade fills. The slag could dehydrate the soil more quickly compared to cement, and it was able to transform the soil into fills with a California bearing ratio greater than 8% (a value for the subgrade suffering general hydrological and load situations recommended by standard). Silicate (aluminate) hydrates exhibiting various maturity could be observed within fills, but there were still many residual pores. Consequently, the bearing capacity of compacted fills highly depended on the interlocking effect of slag particles and the compressive hardening of fills. After incorporating sodium silicate, the dehydration of soil was further accelerated. Also, particle-size distribution and stability of the fills were improved. Due to the stimulation of sodium silicate, dicalcium silicate crystal in slag was destructed and then hydrated into silicate (aluminate) hydrates to cement and enclose particles. As a result, the fills exhibited dense microstructure, and the compacted fills demonstrated higher California bearing ratio and the saturated unconfined compressive strength exceeding 1 MPa after 7 days of curing. Sodium silicate was prone to transform into a reactive gel (NaHSi2O5·3H2O) with water uptake and expansibility, thus, excessive addition of sodium silicate resulted in the cracking of compacted fills under high humidity hence reducing strength. Based on the experimental results and the engineering application scenarios of fills, two mix proportions were recommended. When fills were used under general hydrological and load situations, the stabilizer consisted of 4.5%—6% slag, 3% lime, and 3% fly ash of the wet mass of soil. And 0.2%—0.3% sodium silicate was supposed to be added for the fills requiring better water stability and bearing capacity. The presented method for preparing fills, along with the recommended mix design, can facilitate the co-management of excavated soils and industrial solid waste. Furthermore, it can reduce the carbon emissions and costs associated with engineering.
Key words:  ladle furnace slag    excavated soil    subgrade fill    soil stabilization    silicate sodium
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU521  
基金资助: 国家自然科学基金(42377173);浙江省重点研发计划项目(2019C03107)
通讯作者:  *詹良通,浙江大学建筑工程学院教授、博士研究生导师,软弱土与环境土工教育部重点实验室主任。目前主要从事城市建设余泥渣土安全处置与资源化利用、固体废弃物填埋场地污染防治的研究工作。zhanlt@zju.edu.cn   
作者简介:  王竟宇,浙江大学建筑工程学院博士研究生,在詹良通教授的指导下进行研究,研究方向为工程渣土再生路基填料。
引用本文:    
王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
WANG Jingyu, ZHAN Liangtong, LIANG Teng, CHEN Ping. Performance and Mechanism of Stabilizing Excavated Soil into Subgrade Fills by Using Ladle Furnace Slag. Materials Reports, 2025, 39(5): 24020088-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020088  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020088
1 Zhan L, Wang J, Liang T, et al. Transportation Geotechnics, 2023, 38, 100914.
2 Zhan L, Wang J, Liang T, et al. Transportation Geotechnics, 2023, 38, 100918.
3 Xu J, Xiao C, Wu H, et al. Sustainability, 2020, 12(3), 1017.
4 Lu Y, Xu C, Baghbani A. Construction and Building Materials, 2023, 400, 132879.
5 Wei J, Cen K. Science of The Total Environment, 2019, 653, 200.
6 Shen W, Cao L, Li Q, et al. Renewable and Sustainable Energy Reviews, 2015, 50, 1004.
7 Lei Y, Zhang Q, Nielsen C, et al. Atmospheric Environment, 2011, 45(1), 147.
8 Bullard J W, Jennings H M, Livingston R A, et al. Cement and Concrete Research, 2011, 41(12), 1208.
9 Chen K, Wu D, Zhang Z, et al. Construction and Building Materials, 2022, 315, 125723.
10 Li W, Yi Y, Puppala A J. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(7), 06020008.
11 Wu J, Liu Q, Deng Y, et al. Soils and Foundations, 2019, 59(4), 955.
12 Jiang Y, Ling T C, Shi C, et al. Conservation and Recycling, 2018, 136, 187.
13 Guo J, Bao Y, Wang M. Waste Management, 2018, 78, 318.
14 Wang X, Lu X, Turvey C C, et al. Resources, Conservation and Recycling, 2022, 186, 106590.
15 Yi Y, Liska M, Jin F, et al. Canadian Geotechnical Journal, 2016, 53(5), 773.
16 Kogbara R B, Yi Y, Al-Tabbaa A. Environmental Science and Pollution Research, 2011, 18(8), 1286.
17 Mahedi M, Cetin B, Dayioglu A Y. Journal of Environmental Management, 2020, 253, 109720.
18 Nidzam R M, Kinuthia J M. Proceedings of the Institution of Civil Engineers-Construction Materials, 2010, 163(3), 157.
19 Larsson M A, Baken S, Smolders E, et al. Journal of Hazardous Materials, 2015, 296, 158.
20 Yüksel I A. Environment, Development and Sustainability, 2017, 19(2), 369.
21 Brand A S, Singhvi P, Fanijo E O, et al. Materials, 2020, 13(19), 4251.
22 Ortega-López V, Manso J M, Cuesta I I, et al. Construction and Building Materials, 2014, 68, 455.
23 Montenegro-Cooper J M, Celemín-Matachana M, Cañizal J, et al. Construction and Building Materials, 2019, 203, 201.
24 Manso J M, Ortega-López V, Polanco J A, et al. Construction and Building Materials, 2013, 40, 126.
25 Parsaei M, Vakili A H, Salimi M, et al. Bulletin of Engineering Geology and the Environment, 2021, 80(8), 6303.
26 Xu B, Yi Y. Applied Clay Science, 2019, 178, 105136.
27 Espinosa AB, Revilla-Cuesta V, Skaf, M. et al. Environmental Science and Pollution Research, 2023, 30, 101317.
28 Wu J, Deng Z, Deng Y, et al. Canadian Geotechnical Journal, 2022, 59(6), 889.
29 Zhang L, Ni X, Fan X, et al. Chinese Journal of Underground Space and Engineering, 2024, 20(S1), 77 (in Chinese).
张路, 倪晓逸, 樊恒辉, 等. 地下空间与工程学报, 2024, 20(S1), 77.
30 Bement R A P, Selby A R. Geotechnical & Geological Engineering, 1997, 15(2), 121.
31 Rezaeian M, Ferreira P M V, Ekinci A. Soils and Foundations, 2019, 59(3), 687.
32 Zhu F, Huang N, Xue S, et al. Environmental Science and Pollution Research, 2016, 23(23), 23867.
33 Asano M, Wagai R. Geoderma, 2014, 216, 62.
34 MOT. Specifications for design of highway subgrades, JTG D30-2015. China Communications Press, China, 2015(in Chinese).
中华人民共和国交通运输部. 公路路基设计规范, JTGD 30-2015. 人民交通出版社, 2015.
35 Eissa A, Bassuoni M T, Ghazy A, et al. Journal of Materials in Civil Engineering, 2022, 34(4), 04022031.
36 Lopes E C, da Silva T O, Pitanga H N, et al. International Journal of Pavement Engineering, 2021, 23(14), 5003.
37 Hossain K M A, Lachemi M, Easa S. Resources, Conservation and Recycling, 2007, 51(4), 711.
38 Sunitsakul J, Sawatparnich A, Sawangsuriya A. Geotechnical and Geological Engineering, 2012, 30, 263.
39 Ma Q, Wang H. Advances in Materials Science and Engineering, 2022, 2022, 7654781.
40 Vakili M V, Chegenizadeh A, Nikraz H, et al. Applied Clay Science, 2016, 124-125, 243.
41 Haas J, Nonat A. Cement and Concrete Research, 2015, 68, 124.
42 Zhang W, Zhang J, Ye J, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1663 (in Chinese).
张文生, 张江涛, 叶家元, 等. 硅酸盐学报, 2019, 47(11), 1663.
43 Bernard L, Leemann A. Cement and Concrete Research, 2015, 68, 156.
44 Benmore C J, Monteiro P J M. Cement and Concrete Research, 2010, 40(6), 892.
45 Nakahira A, Naganuma H, Kubo T, et al. Journal of the Ceramic Society of Japan, 2008, 116(1351), 500.
46 Yazici H, Yardimci M Y, Yiiter H, et al. Cement and Concrete Composites, 2010, 32(8), 639.
47 Danner T, Justnes H, Geiker M, et al. Cement and Concrete Research, 2016, 79, 333.
48 Chen P, Ma B, Tan H, et al. Construction and Building Materials, 2022, 321, 126362.
49 Yang J, Li D, Fang Y. Materials (Basel), 2017, 10(7), 695.
50 Dai D, Peng J, Zhao X, et al. Advances in Civil Engineering, 2021, 2021, 9170431.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 周永祥, 霍孟浩, 侯莉, 陈枝东, 张领帅. 低强度流态填筑材料的研究现状及展望[J]. 材料导报, 2024, 38(15): 23040087-8.
[3] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[4] 邓雨希, 关鹏飞, 左迎峰, 吴义强, 袁光明, 李贤军. 基于互穿交联结构的PVA-硅酸钠杂化改性杨木的制备与性能[J]. 材料导报, 2021, 35(10): 10221-10226.
[5] 周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed