Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23110197-6    https://doi.org/10.11896/cldb.23110197
  高分子与聚合物基复合材料 |
典型水成膜泡沫灭火剂流变性研究
张佳庆1,*, 尚峰举1, 黄杰2, 张含灵3, 盛友杰3,*
1 国网安徽省电力有限公司电力科学研究院电力火灾与安全防护安徽省重点实验室(国家电网公司输变电设施火灾防护实验室),安徽省电机工程学会电力消防技术专业委员会,合肥 230601
2 国网安徽省电力有限公司,合肥 230022
3 西安科技大学安全科学与工程学院,西安 710054
Rheological Properties of Typical Aqueous Film-forming Foam
ZHANG Jiaqing1,*, SHANG Fengju1, HUANG Jie2, ZHANG Hanling3, SHENG Youjie3,*
1 State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection (State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities), Electric Power Fire Technology Professional Committee of Anhui Society for Electrical Engineering, Hefei 230601, China
2 State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China
3 College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
下载:  全 文 ( PDF ) ( 6081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水成膜泡沫(Aqueous film-forming foam,AFFF)灭火剂是公认扑救大规模油类火灾最有效的灭火介质,流变性对AFFF的应用有重大影响。为探究AFFF的流变性,研究了四种商用AFFF原液(两种普通3%AFFF和6%AFFF,两种抗溶型3%AR-AFFF和6%AR-AFFF)及不同温度下泡沫的流动行为和粘弹性。结果表明,四种AFFF原液都具有明显的剪切稀化行为,AFFF原液的流动曲线与Cross模型一致。两种AR-AFFF原液均呈现粘弹性固体特征,具有较高的屈服极限,而两种普通AFFF原液呈现粘弹性流体特征。四种泡沫也都呈现出剪切稀化行为,流动曲线符合Herschel-Bulkley模型。四种泡沫均呈现粘弹性流体特征,损耗模量(G″)总是大于储能模量(G′)。四种泡沫的剪切应力、表观黏度、G′和G″等参数均随着温度的升高而逐渐降低,对温度有明显的依赖性。AFFF流变性的差异主要取决于构成组分(表面活性剂与多糖聚合物)。研究结果有望促进新型AFFF在火灾中的高效应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳庆
尚峰举
黄杰
张含灵
盛友杰
关键词:  水成膜泡沫  泡沫  流动行为  粘弹性  本构方程    
Abstract: Aqueous film-forming foam (AFFF) is the most effective extinguishing medium for large-scale oil fires, and its rheology has a great influence on its application. In order to investigate the AFFF rheology, the flow behavior and viscoelasticity of four commercial AFFF concentrates (two ordinary 3%AFFF and 6%AFFF, two alcohol resistant 3%AR-AFFF and 6%AR-AFFF) and foams at different temperatures were studied. The results show that the four kinds of AFFF concentrates have obvious shear thinning behavior, and the flow curves of the AFFF concentrates are consistent with the Cross model. The two AR-AFFF concentrates exhibit the properties of viscoelastic solids with high yield limits, while the two ordinary AFFF concentrates show the characteristics of viscoelastic fluid. All four AFFF foams also exhibit shear-thinning behavior, and the flow curves are consistent with the Herschel-Bulkley model. All four foams exhibit viscoelastic fluid characteristics, and the loss modulus (G″) is always greater than the storage modulus (G′). The shear stress, apparent viscosity, G′, G″ and other parameters of the four foams decrease gradually with the increase of temperature, and show an obvious dependence on temperature. The difference in the rheology of AFFF depends mainly on the constituent components (surfactants and polysaccharide polymers). The results of this work are helpful to promote the efficient application of new AFFF in fire.
Key words:  aqueous film-forming foam    foam    flow behavior    viscoelasticity    constitutive equation
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TQ569  
基金资助: 国网安徽省电力有限公司科技项目(52120523000L)
通讯作者:  *张佳庆,博士,教授级高级工程师,现为国家电网有限公司输变电设施火灾防护实验室和国家电网有限公司消防技术中心负责人,主要从事输变电设施火灾防护技术研究与管理工作。dkyzjq@163.com
盛友杰,博士,西安科技大学安全科学与工程学院副教授、项目博导。主要从事火灾防治关键技术、多功能环保防灭火新材料等方面的研究工作。youjies@xust.edu.cn   
引用本文:    
张佳庆, 尚峰举, 黄杰, 张含灵, 盛友杰. 典型水成膜泡沫灭火剂流变性研究[J]. 材料导报, 2025, 39(5): 23110197-6.
ZHANG Jiaqing, SHANG Fengju, HUANG Jie, ZHANG Hanling, SHENG Youjie. Rheological Properties of Typical Aqueous Film-forming Foam. Materials Reports, 2025, 39(5): 23110197-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110197  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23110197
1 Jia X H. Guangzhou Chemical Industry, 2015(24), 22 (in Chinese).
贾旭宏. 广州化工, 2015(24), 22.
2 Zhou R, Lang X, Zhang X, et al. Process Safety and Environmental Protection, 2021, 146, 360.
3 Peshoria S, Nandini D, Tanwar R K, et al. Environmental Chemistry Letters, 2020, 18, 1277.
4 Yang Y W. Synergistic system based on perfluorinated branched short chain fluorocarbon surfactants and its application in foam extinguishing agents. Master’s Thesis, Nanjing University of Science & Technology, China, 2021 (in Chinese).
杨亚文. 基于全氟支化短链氟碳表面活性剂的协同增效体系及其在泡沫灭火剂研究. 硕士学位论文, 南京理工大学, 2021.
5 Lin C, Pan R M, Xing P, et al. Chinese Journal of Organic Chemistry, 2018(12), 3260(in Chinese).
林超, 潘仁明, 邢萍, 等. 有机化学, 2018 (12), 3260.
6 Yang Y W, Fang J Q, Sha M, et al. Chemical Papers, 2021, 75, 6241.
7 Wang P. Fire Technology, 2015, 51(3), 503.
8 Sheng Y J, Xue M H, Ma L, et al. Fire Technology, 2021, 57, 2079.
9 Robinet N E, Smett C. US patent, US9259602B2, 2016.
10 Libal P. US Patent, US11, 305, 143 B2, 2022.
11 Havelka-Rivard P, Siem M, Hubert M, et al. WIPO Patent Application, WO2022094399, 2021.
12 Diskin M H. La Houille Blanche, 1960, 46(6), 720.
13 NFPA 11. Standard for low-, medium-, and high-expansion foam, National Fire Protection Association, 2021.
14 Cohen-Addad S, Höhler R. Current Opinion In Colloid & Interface Science, 2014, 19(6), 536.
15 Meyer D J, Diaz L H, Dlugogorski B Z. Fire Safety Journal, 2023, 141, 103910.
16 Wyatt N B, Liberatore M W. Journal of Applied Polymer Science, 2009, 114(6), 4076.
17 Engel A, Thoms S, Riebesell U, et al. Nature, 2004, 428(6986), 929.
18 Guo R, Li X, Ma X, et al. Carbohydrate Polymers, 2021, 262, 117890.
19 Wang Z G, Wang S Z,Lin Z H, et al. Chemical Engineering of Oil & Gas, 2003(1), 42 (in Chinese).
王志刚, 王树众, 林宗虎, 等. 石油与天然气化工, 2003(1), 42.
20 Lan C C, Fang B, Lu Y J, et al. Drilling Fluid & Completion Fluid, 2019(3) 371 (in Chinese).
蓝程程, 方波, 卢拥军, 等. 钻井液与完井液, 2019(3), 371.
21 Qiu K, Yu X, Li Q, et al. Smart Mat, 2023, 5(3), e1232.
22 Yu X, Jiang N, Miao X, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 591, 124545.
23 Jiang N, Yu X, Sheng Y, et al. Chemical Engineering Science, 2020, 216, 115474.
24 Luo M, Jia Z, Sun H, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 395, 267.
25 Cherizol R, Sain M, Tjong J. Green and Sustainable Chemistry, 2015, 5(1), 6.
26 Song X, Cui X, Su X, et al. Journal of Petroleum Science and Engineering, 2022, 218, 111065.
27 Djemiat D E, Safri A, Benmounah A, et al. Journal of Petroleum Science and Engineering, 2015, 133, 184.
28 Escudier M P, Gouldson I W, Pereira A S, et al. Journal of Non-Newtonian Fluid Mechanics, 2001, 97(2-3), 99.
29 Jang H Y, Zhang K, Chon B H, et al. Journal of Industrial and Engineering Chemistry, 2015, 21, 741.
30 Wu Y, Guo R, Cao N, et al. Carbohydrate Polymers, 2018, 180, 63.
31 Lai N J, Wen Y P, Qiao D Y, et al. Fine Chemicals, 2020(4), 841 (in Chinese).
赖南君, 闻一平, 乔东宇, 等. 精细化工, 2020(4), 841.
32 Wang Y Z, Wang Y, Luo C Z, et al. Journal of Oil and Gas Technology, 2006(2), 82 (in Chinese).
王越之, 王宇, 罗春芝, 等. 石油天然气学报, 2006(2), 82.
33 Dollet B, Raufaste C. Comptes Rendus Physique, 2014, 15(8-9), 731.
34 Stieger M. Applied Rheology, 2002, 12(5), 232.
35 Simões A, Miranda M, Cardoso C, et al. Pharmaceutics, 2020, 12(9), 820.
36 Hamed R, Al B T, Alkilani A Z, et al. Journal of Pharmaceutical Innovation, 2016, 11, 339.
37 Krishnan J M, Deshpande A P, Kumar P S. Rheology of complex fluids, New York:Springer Press, USA, 2010, pp.3.
38 Cellesi F, Tirelli N. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 288(1-3), 52.
39 Verma A, Chauhan G, Baruah P P, et al. Industrial & Engineering Chemistry Research, 2018, 57(40), 13449.
40 Sheng Y, Peng Y, Zhang S, et al. Gels, 2022, 8(2), 123.
41 Sheng Y, Li Y, Yan C, et al. Powder Technology, 2022, 403, 117420.
42 Saint-Jalmes A, Durian D J. Journal of Rheology, 1999, 43(6), 1411.
43 Biance A L, Cohen-Addad S, Höhler R. Soft Matter, 2009, 5(23), 4672.
44 Denkov N D, Tcholakova S, Golemanov K, et al. Physical Review Letters, 2008, 100(13), 138301.
[1] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[2] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[3] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[4] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[7] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[8] 刘宜娜, 杨荣杰, 冯文静, 王坤, 欧良, 陈兆恒, 陈昱隆. 聚氨酯软质泡沫制品阻燃性能检测分析[J]. 材料导报, 2024, 38(3): 22060066-4.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[11] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[12] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[13] 徐浩, 周双喜, 张浩东, 曾晓辉. 高速铁路板式无砟轨道水泥乳化沥青砂浆粘弹性的研究进展[J]. 材料导报, 2024, 38(20): 23060058-10.
[14] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[15] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed