1 State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection (State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities), Electric Power Fire Technology Professional Committee of Anhui Society for Electrical Engineering, Hefei 230601, China 2 State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China 3 College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Abstract: Aqueous film-forming foam (AFFF) is the most effective extinguishing medium for large-scale oil fires, and its rheology has a great influence on its application. In order to investigate the AFFF rheology, the flow behavior and viscoelasticity of four commercial AFFF concentrates (two ordinary 3%AFFF and 6%AFFF, two alcohol resistant 3%AR-AFFF and 6%AR-AFFF) and foams at different temperatures were studied. The results show that the four kinds of AFFF concentrates have obvious shear thinning behavior, and the flow curves of the AFFF concentrates are consistent with the Cross model. The two AR-AFFF concentrates exhibit the properties of viscoelastic solids with high yield limits, while the two ordinary AFFF concentrates show the characteristics of viscoelastic fluid. All four AFFF foams also exhibit shear-thinning behavior, and the flow curves are consistent with the Herschel-Bulkley model. All four foams exhibit viscoelastic fluid characteristics, and the loss modulus (G″) is always greater than the storage modulus (G′). The shear stress, apparent viscosity, G′, G″ and other parameters of the four foams decrease gradually with the increase of temperature, and show an obvious dependence on temperature. The difference in the rheology of AFFF depends mainly on the constituent components (surfactants and polysaccharide polymers). The results of this work are helpful to promote the efficient application of new AFFF in fire.
1 Jia X H. Guangzhou Chemical Industry, 2015(24), 22 (in Chinese). 贾旭宏. 广州化工, 2015(24), 22. 2 Zhou R, Lang X, Zhang X, et al. Process Safety and Environmental Protection, 2021, 146, 360. 3 Peshoria S, Nandini D, Tanwar R K, et al. Environmental Chemistry Letters, 2020, 18, 1277. 4 Yang Y W. Synergistic system based on perfluorinated branched short chain fluorocarbon surfactants and its application in foam extinguishing agents. Master’s Thesis, Nanjing University of Science & Technology, China, 2021 (in Chinese). 杨亚文. 基于全氟支化短链氟碳表面活性剂的协同增效体系及其在泡沫灭火剂研究. 硕士学位论文, 南京理工大学, 2021. 5 Lin C, Pan R M, Xing P, et al. Chinese Journal of Organic Chemistry, 2018(12), 3260(in Chinese). 林超, 潘仁明, 邢萍, 等. 有机化学, 2018 (12), 3260. 6 Yang Y W, Fang J Q, Sha M, et al. Chemical Papers, 2021, 75, 6241. 7 Wang P. Fire Technology, 2015, 51(3), 503. 8 Sheng Y J, Xue M H, Ma L, et al. Fire Technology, 2021, 57, 2079. 9 Robinet N E, Smett C. US patent, US9259602B2, 2016. 10 Libal P. US Patent, US11, 305, 143 B2, 2022. 11 Havelka-Rivard P, Siem M, Hubert M, et al. WIPO Patent Application, WO2022094399, 2021. 12 Diskin M H. La Houille Blanche, 1960, 46(6), 720. 13 NFPA 11. Standard for low-, medium-, and high-expansion foam, National Fire Protection Association, 2021. 14 Cohen-Addad S, Höhler R. Current Opinion In Colloid & Interface Science, 2014, 19(6), 536. 15 Meyer D J, Diaz L H, Dlugogorski B Z. Fire Safety Journal, 2023, 141, 103910. 16 Wyatt N B, Liberatore M W. Journal of Applied Polymer Science, 2009, 114(6), 4076. 17 Engel A, Thoms S, Riebesell U, et al. Nature, 2004, 428(6986), 929. 18 Guo R, Li X, Ma X, et al. Carbohydrate Polymers, 2021, 262, 117890. 19 Wang Z G, Wang S Z,Lin Z H, et al. Chemical Engineering of Oil & Gas, 2003(1), 42 (in Chinese). 王志刚, 王树众, 林宗虎, 等. 石油与天然气化工, 2003(1), 42. 20 Lan C C, Fang B, Lu Y J, et al. Drilling Fluid & Completion Fluid, 2019(3) 371 (in Chinese). 蓝程程, 方波, 卢拥军, 等. 钻井液与完井液, 2019(3), 371. 21 Qiu K, Yu X, Li Q, et al. Smart Mat, 2023, 5(3), e1232. 22 Yu X, Jiang N, Miao X, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 591, 124545. 23 Jiang N, Yu X, Sheng Y, et al. Chemical Engineering Science, 2020, 216, 115474. 24 Luo M, Jia Z, Sun H, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 395, 267. 25 Cherizol R, Sain M, Tjong J. Green and Sustainable Chemistry, 2015, 5(1), 6. 26 Song X, Cui X, Su X, et al. Journal of Petroleum Science and Engineering, 2022, 218, 111065. 27 Djemiat D E, Safri A, Benmounah A, et al. Journal of Petroleum Science and Engineering, 2015, 133, 184. 28 Escudier M P, Gouldson I W, Pereira A S, et al. Journal of Non-Newtonian Fluid Mechanics, 2001, 97(2-3), 99. 29 Jang H Y, Zhang K, Chon B H, et al. Journal of Industrial and Engineering Chemistry, 2015, 21, 741. 30 Wu Y, Guo R, Cao N, et al. Carbohydrate Polymers, 2018, 180, 63. 31 Lai N J, Wen Y P, Qiao D Y, et al. Fine Chemicals, 2020(4), 841 (in Chinese). 赖南君, 闻一平, 乔东宇, 等. 精细化工, 2020(4), 841. 32 Wang Y Z, Wang Y, Luo C Z, et al. Journal of Oil and Gas Technology, 2006(2), 82 (in Chinese). 王越之, 王宇, 罗春芝, 等. 石油天然气学报, 2006(2), 82. 33 Dollet B, Raufaste C. Comptes Rendus Physique, 2014, 15(8-9), 731. 34 Stieger M. Applied Rheology, 2002, 12(5), 232. 35 Simões A, Miranda M, Cardoso C, et al. Pharmaceutics, 2020, 12(9), 820. 36 Hamed R, Al B T, Alkilani A Z, et al. Journal of Pharmaceutical Innovation, 2016, 11, 339. 37 Krishnan J M, Deshpande A P, Kumar P S. Rheology of complex fluids, New York:Springer Press, USA, 2010, pp.3. 38 Cellesi F, Tirelli N. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 288(1-3), 52. 39 Verma A, Chauhan G, Baruah P P, et al. Industrial & Engineering Chemistry Research, 2018, 57(40), 13449. 40 Sheng Y, Peng Y, Zhang S, et al. Gels, 2022, 8(2), 123. 41 Sheng Y, Li Y, Yan C, et al. Powder Technology, 2022, 403, 117420. 42 Saint-Jalmes A, Durian D J. Journal of Rheology, 1999, 43(6), 1411. 43 Biance A L, Cohen-Addad S, Höhler R. Soft Matter, 2009, 5(23), 4672. 44 Denkov N D, Tcholakova S, Golemanov K, et al. Physical Review Letters, 2008, 100(13), 138301.