Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23100237-8    https://doi.org/10.11896/cldb.23100237
  金属与金属基复合材料 |
不同二冷比水量下24Mn钢连铸坯枝晶生长热模拟研究
张凯伦1,*, 潘栋1, 郭庆涛1,2, 仲红刚3, 张宇1, 张翔宇1, 徐佩1
1 鞍钢集团北京研究院有限公司, 北京 102200
2 海洋装备用金属材料及其应用国家重点实验室, 辽宁 鞍山 114009
3 上海大学先进凝固技术中心, 上海 200444
Thermal Simulation Study on Dendrite Growth of 24Mn Steel Continuous Casting Slab Under Different Secondary Cooling Water Ratio
ZHANG Kailun1,*, PAN Dong1, GUO Qingtao1,2, ZHONG Honggang3, ZHANG Yu1, ZHANG Xiangyu1, XU Pei1
1 Ansteel Beijing Research Institute Co., Ltd., Beijing 102200, China
2 State Key Laboratory of Metal Materials for Marine Equipment and Application, Anshan 114009, Liaoning, China
3 Center for Advanced Solidification Technology, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 20039KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于数值-物理耦合仿真原理,采用连铸坯枝晶生长模拟装置对不同二冷比水量下的24Mn钢凝固行为进行研究。结果表明,随着二冷比水量的增大,铸坯表面及中心温度显著降低,表面回温现象加剧,铸坯凝固速率增大,而凝固坯壳厚度变化不明显。在二冷比水量0.45 L/kg条件下铸坯中心等轴晶率增大,可达58.7%,而在二冷比水量0.73 L/kg条件下铸坯中心元素偏析减轻,碳偏析为1.079。通过建立数学模型研究发现在连铸坯凝固过程中S、P最容易在枝晶前沿偏聚,形成枝晶偏析,而通过增大二冷比水量一定程度上能够加大枝晶偏析,减轻宏观偏析,改善铸坯成分均匀性。本研究有效建立了连铸工艺与铸坯组织、偏析间的定性/定量关系,为24Mn钢高质量连铸生产提供了理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张凯伦
潘栋
郭庆涛
仲红刚
张宇
张翔宇
徐佩
关键词:  24Mn钢  二冷比水量  耦合模拟  枝晶生长    
Abstract: Based on the principle of numerical-physical coupling simulation, the solidification behavior of 24Mn steel under different secondary cooling water ratios was studied by using the continuous casting billet dendrite growth simulation device. The results show that with the increase of the secondary cooling water ratio, the surface and center temperatures of the slab decrease significantly, the surface temperature recovery phenomenon intensifies, the solidification rate of the slab increases, and the thickness of the solidified shell does not change significantly. Under the condition of 0.45 L/kg water ratio, the equiaxed crystal ratio of the center of the slab increases to 58.7%. While the segregation of the central elements of the slab is reduced under the condition of 0.73 L/kg water ratio, and the carbon segregation is 1.079. Through the mathematical model established, it is found that S and P are most likely to segregate on the dendritic front and form dendritic segregation during the solidification process of continuous casting billet, by increasing the cooling water ratio, the dendritic segregation can be increased to a certain extent, the macro segregation can be reduced, and the composition uniformity of the casting billet can be improved. In this work, the qualitative/quantitative relationship between continuous casting process and slab microstructure and segregation was effectively established, which provided theoretical gui-dance for high-quality continuous casting production of 24Mn steel.
Key words:  24Mn steel    secondary cooling water ratio    coupled simulation    dendrite growth
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG142.33  
基金资助: 国家十四五重点专项(2021YFB3702005)
通讯作者:  *张凯伦,现入职鞍钢集团北京研究院有限公司从事特钢开发相关工作。目前主要研究领域为合金钢微合金化,连铸数值模拟。zhangkailun@ansteel.com.cn   
引用本文:    
张凯伦, 潘栋, 郭庆涛, 仲红刚, 张宇, 张翔宇, 徐佩. 不同二冷比水量下24Mn钢连铸坯枝晶生长热模拟研究[J]. 材料导报, 2025, 39(5): 23100237-8.
ZHANG Kailun, PAN Dong, GUO Qingtao, ZHONG Honggang, ZHANG Yu, ZHANG Xiangyu, XU Pei. Thermal Simulation Study on Dendrite Growth of 24Mn Steel Continuous Casting Slab Under Different Secondary Cooling Water Ratio. Materials Reports, 2025, 39(5): 23100237-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100237  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23100237
1 Luo S, Zhu M Y. Iron and Steel, 2023, 58(9), 39 (in Chinese).
罗森, 朱苗勇. 钢铁, 2023, 58(9), 39.
2 Zhao P F, Guo X H, Song K X. Development and Application of Materials, 2008, 23(4), 85 (in Chinese).
赵培峰, 国秀花, 宋克兴. 材料开发与应用, 2008, 23(4), 85.
3 Zhou Y H, Wang X, Fang Y, et al. Modern Machinery, 2013(2), 67 (in Chinese).
周英豪, 王翔, 方颖, 等. 现代机械, 2013(2), 67.
4 Cui Y Y, Qin Y X. Hot Working Technology, 2021, 50(15), 51 (in Chinese).
崔艳雨, 秦永祥. 热加工工艺, 2021, 50(15), 51.
5 Shi J K, Yue F, Tian R L, et al. Special Steel, 2022, 43(2), 16 (in Chinese).
史建凯, 岳峰, 田儒良, 等. 特殊钢, 2022, 43(2), 16.
6 Lou J J, Bao Y P. Journal of University of Science and Technology Beijing, 2005(2), 173 (in Chinese).
娄娟娟, 包燕平. 北京科技大学学报, 2005(2), 173.
7 Chen X R, Zhao L, Yu H F, et al. Research and Exploration in Laboratory, 2023, 42(1), 208 (in Chinese).
陈湘茹, 赵龙, 余海峰, 等. 实验室研究与探索, 2023, 42(1), 208.
8 Sha M H, Li N, Song B, et al. Experimental Technology and Management, 2010, 27(2), 27 (in Chinese).
沙明红, 李娜, 宋波, 等. 实验技术与管理, 2010, 27(2), 27.
9 Li H. Establishment and experimental study of thermophysical simulation experimental system in continuous casting process. Master’s Thesis, Dalian University of Technology, China, 2003 (in Chinese).
李弘. 连铸过程热物理模拟实验体系的建立及实验研究. 硕士学位论文, 大连理工大学, 2003.
10 Wei J L, Wang Y H, Yu M X, et al. Special Steel, 2002, 23(3), 10 (in Chinese).
魏计林, 王宥宏, 虞明香, 等. 特殊钢, 2002, 23(3), 10.
11 Liu J, Zhou W J, Lu H, et al. Steelmaking, 2020, 36(4), 75 (in Chinese).
刘建, 周伟基, 路辉, 等. 炼钢, 2020, 36(4), 75.
12 Yuan P F, Li Z L. Shanxi Metallurgy, 2021, 44(6), 72 (in Chinese).
元鹏飞, 李忠利. 山西冶金, 2021, 44(6), 72.
13 Wang X, Fang Y, Zhang G C, et al. Continuous Casting, 2014(2), 11 (in Chinese).
王翔, 方颖, 张国成, 等. 连铸, 2014(2), 11.
14 Wang Y N. ISIJ International, 2019, 59(5), 872.
15 Zhu S L, Zheng G Q, Ye J S, et al. Iron and Steel, 2014, 49(8), 48 (in Chinese).
朱施利, 郑国渠, 叶健松, 等. 钢铁, 2014, 49(8), 48.
16 Yang Y B, Ji C, Luo S, et al. Iron and Steel, 2010, 45(9), 48 (in Chinese).
杨跃标, 祭程, 罗森, 等. 钢铁, 2010, 45(9), 48.
17 Thomas B G, Najjar F M. Applied Mathematical Modelling, 1991, 15(5), 226.
18 Dong H B, Lee P D. Acta Materialia, 2005, 53(3), 659.
19 Zhu X L, Pan D, Zhong H G, et al. Metallurgist, 2023, 67, 554.
20 Zhang K Q, Bai X J, Du D B. In:Asian Steel Congress 2000. Beijing, 2000, pp.288 (in Chinese).
张克强, 白学军, 杜得宝. 2000年亚洲钢铁大会. 北京, 2000, pp.288.
21 Bai L, Wang B, Zhong H G, et al. Metals, 2016, 6(3), 53.
22 Kobayashi Y, Dobara K, Todoroki H, et al. ISIJ International, 2020, 60(2), 276.
23 Huang Y W, Long M J, Liu P, et al. Metallurgical and Materials Tran-sactions B, 2017, 48, 2504.
24 Ferrandini P L, Rios C T, Dutra A T, et al. Materials Science and Engineering:A, 2006, 435, 139.
25 Farnin C J, Rickman J M, Dupont J N. Metallurgical and Materials Transactions A, 2021, 52, 5443.
26 Yoo H S. Transactions of the Korean Society of Mechanical, 1996, 20(7), 2367.
27 Mao M T, Guo H J, Wang F, et al. ISIJ International, 2019, 59(5), 848.
28 Onorato P I K, Hopper R W, Yinnon H, et al. Journal of Geophysical Research:Solid Earth, 1981, 86(B10), 9511.
29 Clyne T W, Kurz W. Metallurgical Transactions A, 1981, 12, 965.
30 El-bealy M, Thomas B G. Metallurgical and Materials Transactions B, 1996, 27, 689.
31 Meng Y, Thomas B G. Metallurgical and Materials Transactions B, 2003, 34, 685.
[1] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[2] 梁杰铬, 罗政, 闫钰, 袁斌. 面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法[J]. 《材料导报》期刊社, 2018, 32(11): 1779-1786.
[3] 骈松, 张照, 包羽冲, 刘林, 李日. 基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*[J]. 《材料导报》期刊社, 2017, 31(20): 140-146.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed