Uniform Fractal Characteristics of Surface Crack Distribution in Concrete Under Uniaxial Compression
WU Jianfeng1,2,*, HUANG Yuyue1, LI Hehe1, MA Deyuan3, WANG Caihua1,2
1 School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China 2 Qinhuangdao Campus of Northeast Petroleum University, Qinhuangdao 066004, Hebei, China 3 Qinhuangdao Xinglong Construction Engineering Co., Ltd., Qinhuangdao 066300, Hebei, China
Abstract: In this work, the single fractal dimension, which depicts the uniform fractal characteristics of the surface crack distribution of concrete under uniaxial compression, was quantitatively calculated following the fractal theory.The relationship between the single fractal dimension of concrete surface crack distribution and the relevant factors such as peak stress, peak strain, sample size, stress level, absorbed energy per unit vo-lume, and brittleness index was discussed.The elastic fractal damage constitutive equation of concrete under uniaxial compression based on the single fractal dimension of surface crack distribution was established.The results showed that the surface crack distribution of concrete under uniaxial compression had consistent fractal characteristics and exhibited self-similarity.The single fractal dimension of the concrete specimen (C30) was between 1.60 and 1.80, and a larger single fractal dimension corresponds to a more complicated distribution of surface cracks.The single fractal dimension was found to change positively with peak stress, peak strain, absorbed energy per unit volume, and stress level, and inversely with coarse aggregate particle size, sample size, and brittleness index.The theoretical curve of concrete elastic fractal damage constitutive equation based on single fractal dimension corresponded well with the tested stress-strain curve.The output of this work provides useful information for the analysis of crack evolution behavior of concretes.
1 Xie H P, Ju Y. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3), 300 (in Chinese). 谢和平, 鞠杨. 力学学报, 1999, 31(3), 300. 2 Xie H P, Ju Y. Journal of China Coal Society, 1997, 22(6), 587 (in Chinese). 谢和平, 鞠杨. 煤炭学报, 1997, 22(6), 587. 3 Cao M S, Ren Q W. China Civil Engineering Journal, 2005, 38(12), 59 (in Chinese). 曹茂森, 任青文. 土木工程学报, 2005, 38(12), 59. 4 Cao M S, Ren Q W, Zhai A L, et al. Rock and Soil Mechanics, 2005, 26(10), 1570 (in Chinese). 曹茂森, 任青文, 翟爱良, 等. 岩土力学, 2005, 26(10), 1570. 5 Tian W, Dang F N, Chen H Q. Journal of Basic Science and Engineering, 2012, 20(3), 424 (in Chinese). 田威, 党发宁, 陈厚群. 应用基础与工程科学学报, 2012, 20(3), 424. 6 Dang F N, Fang J Y, Ding W H. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1), 2922 (in Chinese). 党发宁, 方建银, 丁卫华. 岩石力学与工程学报, 2015, 34(S1), 2922. 7 Zheng D, Song W, Fu J, et al. Construction and Building Materials, 2020, 258, 120351. 8 Yin Y J, Ren Q W, Shen L. Construction and Building Materials, 2020, 262, 120086. 9 Sun J, Shen Z H, Liao H F. Acta Materiae Compositae Sinica, DOI:10. 13801/j. cnki. fhclxb. 20240417. 003 (in Chinese). 孙杰, 申紫豪, 廖海峰. 复合材料学报, DOI:10. 13801/j. cnki. fhclxb. 20240417. 003. 10 Ebrahimkhanlou A, Athanasiou A, Hrynyk T D, et al. Journal of Bridge Engineering, 2019, 24(7), 04019059. 11 Liu Y Z, Dai K S, Li D S, et al. Journal of Building Engineering, 2021, 43, 103177. 12 Jiang S, Xu G, Zhao T Y. Water Resources and Power, 2018, 36(1), 124 (in Chinese). 蒋赏, 徐港, 赵恬悦. 水电能源科学, 2018, 36(1), 124. 13 Shang X Y, Yang J W, Li J S. Acta Materiae Compositae Sinica, 2020, 37(7), 1774 (in Chinese). 商效瑀, 杨经纬, 李江山. 复合材料学报, 2020, 37(7), 1774. 14 Yuan F, Yu J. China Sciencepaper, 2020, 15(6), 636 (in Chinese). 袁飞, 于江. 中国科技论文, 2020, 15(6), 636. 15 Yu J, Lyu X B, Qin Y J. Chinese Journal of Engineering, 2021, 43(10), 1385 (in Chinese). 于江, 吕旭滨, 秦拥军. 工程科学学报, 2021, 43(10), 1385. 16 Yin Y J, Ren Q W, Shen L, et al. Journal of Hydraulic Engineering, 2021, 52(11), 1270 (in Chinese). 殷亚娟, 任青文, 沈雷, 等. 水利学报, 2021, 52(11), 1270. 17 Fan X C, Luo C. Concrete, 2021(6), 23 (in Chinese). 范小春, 罗聪. 混凝土, 2021(6), 23. 18 Shang X Y, Yang J W, Wang S M, et al. Journal of Cleaner Production, 2021, 304, 127083. 19 Pan L X, Carrillo J L, Cao M S, et al. Engineering Fracture Mechanics, 2022, 264, 108329. 20 Cui S A, Xu L L, Rao J R, et al. Journal of Building Materials, 2024, 27(2), 99 (in Chinese). 崔圣爱, 徐李麟, 饶家锐, 等. 建筑材料学报, 2024, 27(2), 99. 21 Zhou J H, Wu X X, Yu H L, et al. Journal of Architecture and Civil Engineering, 2023, 40(4), 52 (in Chinese). 周静海, 吴晓鑫, 于杭琳, 等. 建筑科学与工程学报, 2023, 40(4), 52. 22 Luo L, Li T, Liu X M, et al. Journal of Henan University of Science and Technology (Natural Science), 2023, 44(3), 38 (in Chinese). 罗玲, 李桐, 刘雪梅, 等. 河南科技大学学报(自然科学版), 2023, 44(3), 38. 23 Mandelbrot B B, Wheeler J A. American Journal of Physics, 1983, 51(3), 286. 24 Talaat A, Emad A, Tarek A, et al. Ain Shams Engineering Journal, 2021, 12(1), 205. 25 Atkinson B K. Fracture Mechanics of Rock, Academic Press, London, 1987, pp. 27. 26 Xie H P, Peng R D, Ju Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15), 2603 (in Chinese). 谢和平, 彭瑞东, 鞠杨, 等. 岩石力学与工程学报, 2005, 24(15), 2603. 27 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17), 3003 (in Chinese). 谢和平, 鞠杨, 黎立云. 岩石力学与工程学报, 2005, 24(17), 3003. 28 Xu S L, Zhao Y H, Wu Z M. Journal of Materials in Civil Engineering, 2006, 18(6), 817. 29 Liang S M, Wei Y, Gao X. Cement and Concrete Research, 2017, 100, 84. 30 Bishop A W. In:Proceedings of the Geotechnical Conference, Oslo, Norway, 1967, pp. 142. 31 Ye L, Li X W, Ma X X, et al. Xinjiang Petroleum Geology, 2020, 41(5), 575 (in Chinese). 叶亮, 李宪文, 马新星, 等. 新疆石油地质, 2020, 41(5), 575. 32 Lemaitre J. Journal of Engineering Materials and Technology, 1985, 107(1), 83. 33 Tsai W T. Journal of Structural Engineering, 1988, 114(9), 2133. 34 Carreira D J, Chu K H. ACI Journal Proceedings, 1985, 82(6), 797. 35 Su Z. Journal of Water Resources and Architectural Engineering, 2012, 10(4), 174 (in Chinese). 苏征. 水利与建筑工程学报, 2012, 10(4), 174.