Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110204-11    https://doi.org/10.11896/cldb.23110204
  高分子与聚合物基复合材料 |
可穿戴电子用前驱体型银墨水研究进展
侯明玥1, 姚日晖1, 罗东向2, 郑华3, 刘贤哲4, 黎振超1, 蔡炜5, 宁洪龙1,*, 彭俊彪1
1 华南理工大学材料科学与工程学院,广州 510641
2 广州大学化学化工学院,广州 510006
3 东莞理工学院电子工程与智能化学院,广东 东莞 523808
4 五邑大学应用物理与材料学院,广东 江门 529020
5 季华实验室,广东 佛山 528000
Research Progress of Precursor Type Silver Ink for Wearable Electronics
HOU Mingyue1, YAO Rihui1, LUO Dongxiang2, ZHENG Hua3, LIU Xianzhe4, LI Zhenchao1, CAI Wei5, NING Honglong1,*, PENG Junbiao1
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
2 School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
3 School of Electronic Engineering and Intelligence, Dongguan University of Technology, Dongguan 523808, Guangdong, China
4 School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China
5 Ji Hua Laboratory, Foshan 528000, Guangdong, China
下载:  全 文 ( PDF ) ( 18448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可穿戴电子往往具有体积小、质量轻、柔韧性好等特点,而电极柔性化可以有效提高可穿戴电子佩戴时的舒适性、安全性和准确性。喷墨印刷技术作为一种新型的电子器件制造方法,具有成本低、精度高以及速度快等优点,是制备柔性电极的极佳选择。导电墨水的开发是印刷柔性电极中最为关键的一个环节,从根本上决定薄膜的印刷质量和功能。本文对适用于可穿戴电子的前驱体型导电银墨水的研究进行了综述,主要从墨水的关键组分银前驱体出发,重点关注了前驱体型银墨水的配制、后处理以及在可穿戴电子领域的最新进展,并对可穿戴电子用前驱体型银墨水的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯明玥
姚日晖
罗东向
郑华
刘贤哲
黎振超
蔡炜
宁洪龙
彭俊彪
关键词:  可穿戴电子  前驱体型银墨水  柔性  喷墨打印    
Abstract: Wearable electronics often have the characteristics of small size, lightweight, and good flexibility, and electrode flexibility can effectively improve the comfort, safety, and accuracy of wearable electronics when wearing. As a new type of electronic device manufacturing method, inkjet printing technology has the advantages of low cost, high precision and fast speed, and is an excellent choice for the preparation of flexible electrodes. The development of conductive ink is the most critical link in the printing of flexible electrodes, which fundamentally determines the printing quality and function of the film. In this paper, the research on precursor conductive silver inks suitable for wearable devices is reviewed, mainly starting from the key component of ink, silver precursors, focusing on the preparation and post-processing of precursor silver inks and the latest developments in the field of wearable electronics, and prospecting the development direction of precursor silver inks.
Key words:  wearable electronics    precursor type silver ink    flexibility    inkjet printing
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG146.3+2  
  TS951.23  
基金资助: 国家重点研发计划(2022YFB3603605);国家自然科学基金(62174057;62074060;62375057;22090024);广东省自然科学基金(2023A1515011026);广东省基础与应用基础研究基金(2020B1515020032);广东省教育厅广东省普通高校重点领域专项(新一代电子信息)(2022ZDZX1002)
通讯作者:  *宁洪龙,华南理工大学研究员、博士研究生导师,目前主要从事新型信息显示材料与器件系统集成领域的研究。ninghl@scut.edu.cn   
作者简介:  侯明玥,华南理工大学材料科学与工程学院硕士研究生,在姚日晖教授的指导下进行研究。目前主要研究领域为银电极的喷墨印刷制备。
引用本文:    
侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
HOU Mingyue, YAO Rihui, LUO Dongxiang, ZHENG Hua, LIU Xianzhe, LI Zhenchao, CAI Wei, NING Honglong, PENG Junbiao. Research Progress of Precursor Type Silver Ink for Wearable Electronics. Materials Reports, 2025, 39(4): 23110204-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110204  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110204
1 Gao M, Li L, Song Y. Journal of Materials Chemistry: C, 2017, 5(12), 2971.
2 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials, 2016, 26(11), 1678.
3 Cheng Y, Wang R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365.
4 Zeng W, Shu L, Li Q, et al. Advanced Materials, 2014, 26(31), 5310.
5 Hammock M L, Chortos A, Tee B C, et al. Advanced Materials, 2013, 25(42), 5997.
6 Karim N, Afroj S, Malandraki A, et al. Journal of Materials Chemistry: C, 2017, 5(44), 11640.
7 Yan K, Li J, Pan L, et al. APL Materials, 2020, 8(12), 120705.
8 Sanz-Izquierdo B, Batchelor J C, Sobhy M I. IET Microwaves, Antennas & Propagation, 2010, 4(11), 1980.
9 Kennedy T F, Fink P W, Chu A W, et al. IEEE Trans Antennas Propag, 2009, 57(4), 910.
10 Krykpayev B, Farooqui M F, Bilal R M, et al. Microelectron Journal, 2017, 65, 40.
11 Kim J, Kim M, Lee M S, et al. Nature Communications, 2017, 8, 14997.
12 Kim J, Campbell A S, De Ávila B E, et al. Nature Biotechnology, 2019, 37(4), 389.
13 Scheideler W J, Kumar R, Zeumault A R, et al. Advanced Functional Materials, 2017, 27(14), 1606062.
14 Singh M, Haverinen H M, Dhagat P, et al. Advanced Materials, 2010, 22(6), 673.
15 Kwon K, Rahman M K, Phung T H, et al. Flexible and Printed Electronics, 2020, 5, 043003.
16 Gassend V, Hauf C R, Chen J. SID International Symposium Digest of Technical Papers, 2022, 53(1), 398.
17 Calvert P. Chemistry of Materials, 2001, 13(10), 3299.
18 Yang X, Lin Y, Wu T, et al. Opto-Electronic Advances, 2022, 5(6), 210123.
19 Chen J, Lin G, Wang Y, et al. Applied Surface Science, 2017, 396, 202.
20 Bhat K S, Ahmad R, Wang Y, et al. Journal of Materials Chemistry: C, 2016, 4(36), 8522.
21 Lee H, Chou K, Huang K. Nanotechnology, 2005, 16(10), 2436.
22 Farraj Y, Grouchko M, Magdassi S. Chemical Communications, 2015, 51(9), 1587.
23 Raut N C, Al-Shamery K. Journal of Materials Chemistry: C, 2018, 6(7), 1618.
24 Milardović S, Ivanišević I, Rogina A, et al. International Journal of Electrochemical Science, 2018, 13(11), 11136.
25 Ning H L, Tao R Q, Yao R H, et al. Materials Reports, 2018, 32(17), 2959 (in Chinese).
宁洪龙, 陶瑞强, 姚日晖, 等. 材料导报, 2018, 32(17), 2959.
26 Huang Q, Shen W, Xu Q, et al. Materials Chemistry Physics, 2014, 147(3), 550.
27 Zhou X, Li W, Wu M, et al. Applied Surface Science, 2014, 292, 537.
28 Suriati G, Mariatti M, Azizan A. International Journal of Automotive and Mechanical Engineering, 2014, 10, 1920.
29 Li C, Chang S, Su F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 209.
30 Guo J, Sun Y, Tee C A T H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679, 132546.
31 Liu T, Zhao J, Luo D, et al. Surfaces and Interfaces, 2022, 28, 101609.
32 Steinigeweg D, Schlücker S. Chemical Communications, 2012, 48(69), 8682.
33 Lin J, Hsueh Y, Huang J. Journal of Solid State Chemistry, 2014, 214, 2.
34 Ranoszek-Soliwoda K, Tomaszewska E, Socha E, et al. Journal of Nanoparticle Research, 2017, 19(8), 273.
35 Douglas S P, Mrig S, Knapp C E. Chemistry-A European Journal, 2021, 27(31), 8062.
36 Yang Y, Liu D, Zhao P, et al. IET Collaborative Intelligent Manufacturing, 2019, 1(1), 10.
37 Valeton J J P, Hermans K, Bastiaansen C W M, et al. Journal of Materials Chemistry, 2010, 20(3), 543.
38 Knapp C E, Metcalf E A, Mrig S, et al. Chemistry Open, 2018, 7(11), 850.
39 Zheng Y, He Z, Gao Y, et al. Scientific Reports, 2013, 3(1), 1786.
40 Chen J, Zhang J, Wang Y, et al. Journal of Materials Chemistry: C, 2016, 4(44), 10494.
41 Gu Y, Wu A, Federici J F. Thin Solid Films, 2017, 636, 397.
42 Yang W, Wang C, Arrighi V. Journal of Materials Science: Materials in Electronics, 2018, 29(4), 2771.
43 Tamari Y, Gautrein A, Schmiga C, et al. Energy Procedia, 2014, 55, 708.
44 Dearden A L, Smith P J, Shin D Y, et al. Macromolecular Rapid Communications, 2005, 26(4), 315.
45 Kell A J, Paquet C, Mozenson O, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17226.
46 Logvinenko V, Polunina O, Mikhailov Y, et al. Journal of Thermal Analysis and Calorimetry, 2007, 90, 813.
47 Nakano M, Fujiwara T, Koga N. The Journal of Physical Chemistry C, 2016, 120(16), 8841.
48 Li Y, Kim Y N, Lee E J, et al. Nuclear Instruments and Methods in Physics Research Section B, 2006, 251(2), 425.
49 Abu-Zied B M, Asiri A M. Thermochimica Acta, 2014, 581, 110.
50 Stempien Z, Rybicki E, Rybicki T, et al. Sensors and Actuators B: Chemical, 2016, 224, 714.
51 Mou Y, Zhang Y, Cheng H, et al. Applied Surface Science, 2018, 459, 249.
52 Mou Y, Cheng H, Wang H, et al. Applied Surface Science, 2019, 475, 75.
53 Zhou Y, Xu Z, Bai H, et al. Advanced Materials Technologies, 2023, 8(8), 2201557.
54 Cai Y, Yao X, Piao X, et al. Chemical Physics Letters, 2019, 737, 136857.
55 Wu J T, Hsu S L C, Tsai M H, et al. Thin Solid Films, 2009, 517(20), 5913.
56 Dong Y, Li X, Liu S, et al. Thin Solid Films, 2015, 589, 381.
57 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830.
58 Yang W, Mathies F, Unger E L, et al. Journal of Materials Chemistry: C, 2020, 8(46), 16443.
59 Li J, Zhang X, Liu X, et al. Materials & Design, 2020, 185, 108255.
60 Fan P, Zhang W, Yu X, et al. Materials Research Express, 2022, 9(1), 16303.
61 Yang W, Hermerschmidt F, Mathies F, et al. Journal of Materials Science, 2021, 32(5), 6312.
62 Zhou W, Bai S, Ma Y, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24887.
63 Xie Y, Ouyang S, Wang D, et al. Journal of Materials Science, 2020, 55(33), 15908.
64 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830.
65 Yang W, List-Kratochvil E J W, Wang C. Journal of Materials Chemistry:C, 2019, 7(48), 15098.
66 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554.
67 Wu J, Hsu S L, Tsai M, et al. Journal of Physical Chemistry: C, 2011, 115(22), 10940.
68 Yang W, Wang C, Arrighi V. Journal of Materials Science, 2018, 29(24), 20895.
69 Shi L, Layani M, Cai X, et al. Sensors and Actuators B, Chemical, 2018, 256, 938.
70 Zhou Y C, Ning H L, Wang Y P, et al. Chinese Journal of Luminescence, 2019, 40(9), 1146 (in Chinese).
周艺聪, 宁洪龙, 王一平, 等. 发光学报, 2019, 40(9), 1146.
71 Macneill W, Choi C H, Chang C H, et al. Scientific Reports, 2015, 5, 14845.
72 Ibrahim N, Akindoyo J O, Mariatti M. Journal of Science, Advanced Materials and Devices, 2022, 7(1), 100395.
73 Theodorakos I, Zacharatos F, Geremia R, et al. Applied Surface Science, 2015, 336, 157.
74 Paeng D, Yeo J, Lee D, et al. Applied Physics: A, 2015, 120(4), 1229.
75 Titkov A I, Shundrina I K, Gadirov R M, et al. Materials Today: Procee-dings, 2018, 5(8, Part 2), 16042.
76 Zhao P, Huang J, Nan J, et al. Journal of Materials Processing Technology, 2020, 275, 116347.
77 Sui Y, Zorman C A, Sankaran R M. Plasma Processes and Polymers, 2020, 17(5), 2000009.
78 Godyak V A, Piejak R B, Alexandrovich B M. IEEE Transactions on Plasma Science, 1991, 19(4), 660.
79 Michelmore A, Whittle J D, Short R D, et al. Plasma Process and Polymers, 2014, 11(9), 833.
80 Peng J, Yi M, Zheng K, et al. Journal of Materials Science, 2023, 58(4), 1813.
81 Knapp C E, Chemin J B, Douglas S P, et al. Advanced Materials Technologies, 2018, 3(3), 1700326.
82 Hengge M, Livanov K, Zamoshchik N, et al. Flexible and Printed Electronics, 2021, 6(1), 15009.
83 Perelaer J, De Gans B J, Schubert U S. Advanced Materials, 2006, 18(16), 2101.
84 Vaseem M, Lee S K, Kim J G, et al. Chemical Engineering Journal, 2016, 306, 796.
85 Roberson D A, Wicker R B, MacDonald E. Journal of Electronic Materials, 2012, 41, 2553.
86 Werner C, Godlinski D, Zöllmer V, et al. Journal of Materials Science, Materials in Electronics, 2013, 24, 4367.
87 Hummelgård M, Zhang R, Nilsson H E, et al. PloS One, 2011, 6(2), 17209.
88 Wünscher S, Abbel R, Perelaer J, et al. Journal of Materials Chemistry C, 2014, 2(48), 10232.
89 Perelaer J, De Gans B J, Schubert U S. Advanced Materials, 2006, 18(16), 2101.
90 Kamyshny A, Steinke J, Magdassi S. The Open Applied Physics Journal, 2011, 4(1), 19.
91 Bidoki S M, Nouri J, Heidari A A. Journal of Micromechanics And Microengineering, 2010, 20(5), 55023.
92 Vaseem M, Mckerricher G, Shamim A. ACS Applied Materials & Interfaces, 2016, 8(1), 177.
93 Ju B, Kim I, Li B M, et al. Advanced Healthcare Materials, 2021, 10(20), 2100893.
94 Kim I, Ju B, Zhou Y, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24081.
[1] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[2] 刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
[3] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[4] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[7] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[8] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[9] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[10] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[11] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[12] 曾杨武, 庄俊城, 杨楠. 可实现逻辑运算的柔性电路[J]. 材料导报, 2024, 38(24): 23070218-5.
[13] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[14] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[15] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed