Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23100257-6    https://doi.org/10.11896/cldb.23100257
  无机非金属及其复合材料 |
用于ECG电极的长期稳定性评估方法:以皮革电极为例
刘海龙, 芶立*
四川大学生物医学工程学院,成都 610065
Evaluation of Long-term Stability of ECG Electrode: Taking Leather Electrode as an Example
LIU Hailong, GOU Li*
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 15406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型柔性电极采集心电(ECG)数据十分便利,但证实电极有效性时缺乏长期稳定性的评估数据,因此提出了一种多维度评价新型柔性电极长期稳定性的方法,包括外观形态、电极-皮肤接触阻抗、三种姿态下ECG采集质量三个方面;其中ECG采集质量的评估由改进的信噪比、设计的汉明距离(HD-RPS-2D)和其他四个常用指标进行量化。通过自制的新型猪皮革电极进行验证,结果表明:在144 h的佩戴过程中,猪皮革电极外观变化小,电极-皮肤接触阻抗在20~50 Hz范围内均低于标准电极,并且在所有测试频段内整体波动小;六个指标能够衡量ECG信号质量,采集ECG的指标值在三种姿态下均与标准电极高度相近,特别是坐姿、站姿状态下长期稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘海龙
芶立
关键词:  柔性电极  心电电极  皮革电极  长期稳定性    
Abstract: The new flexible electrode can collect electrocardiogram (ECG) data more conveniently, but there is a lack of research on the evaluation of the long-term stability of the electrode in verifying the effectiveness of the electrode. A multi-dimensional method was proposed to evaluate the long-term stability of the new flexible electrode including three aspects of appearance, electrode-skin contact impedance and ECG recording quality under three postures, in which the ECG recording quality was evaluated by the improved signal-to-noise ratio, the designed hamming distance (HD-RPS-2D) and other four commonly used indexes. Verified by the self-made new pig leather electrode, the results show that, during the wearing experiment of 144 hours, the appearance of the pig leather electrode changes little and the electrode-skin contact impedance is lower than that of the standard electrode in the range of 20—50 Hz with a small overall fluctuation in all test frequency bands. The 6 indexes can evaluate the quality of ECG well. And the index values of the collected ECG are very close to that of the standard electrode in the three postures, especially remain stable for a long term in the sitting and standing posture.
Key words:  flexible electrode    ECG electrode    leather electrode    long-term stability
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  R540.4+1  
基金资助: 四川省科技计划项目(2020YFSY0018)
通讯作者:  *芶立,四川大学生物医学工程学院教授、硕士研究生导师。目前主要从事薄膜材料、生物传感器材料等方面的研究工作。gouli@scu.edu.cn   
作者简介:  刘海龙,四川大学生物医学工程学院硕士研究生,在芶立教授的指导下进行研究。目前主要研究领域为可穿戴设备、疼痛评估。
引用本文:    
刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
LIU Hailong, GOU Li. Evaluation of Long-term Stability of ECG Electrode: Taking Leather Electrode as an Example. Materials Reports, 2025, 39(4): 23100257-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100257  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23100257
1 Alvarez P, Sianis A, Brown J, et al. Reviews in Cardiovascular Medicine, 2021, 22(2), 403.
2 Huang K, Liu J, Lin S, et al. Advanced Composites and Hybrid Materials, 2022, 5(1), 220.
3 Casson A J, Saunders R, Batchelor J C. IEEE Sensors Journal, 2017, 17(7), 2205.
4 Searle A, Kirkup L. Physiological Measurement, 2000, 21(2), 271.
5 Li X, Zhu P, Zhang S, et al. ACS Nano, 2022, 16(4), 5909.
6 Panchal J, Singh M I, Sandha K S, et al. Journal of Electronic Materials, 2024, 53(5), 2633.
7 Dey R, Samanta P K, Chokda R P, et al. Cogent Engineering, 2023, 10(1), 2246750.
8 Ha T, Tran J, Liu S, et al. Advanced Science, 2019, 6(14), 1900290.
9 Zhou J, Zhang Y, Yang H, et al. Coatings, 2023, 13(2), 289.
10 Ankhili A, Tao X, Cochrane C, et al. Materials, 2018, 11(2), 256
11 Wang J, Zhou Q, Wang A, et al. Advanced Functional Materials, 2024, 34(23), 2309704.
12 Ali A A, Al-Sayah M H, Al-Othman A, et al. ACS Applied Electronic Materials, 2024, 6(1), 576.
13 Tu H, Li X, Lin X, et al. Polymers, 2023, 15(18), 3665.
14 Doci D, Ademi M, Tuvshinbayar K, et al. Coatings, 2023, 13(9), 1624.
15 Liu J, Liu K, Pan X, et al. Advanced Composites and Hybrid Materials, 2023, 6(1), 13.
16 Satija U, Ramkumar B, Manikandan M S. IEEE Reviews in Biomedical Engineering, 2018, 11, 36.
17 Huang Y, Song Y, Gou L, et al. Biosensors, 2021, 11(4), 101.
18 Wang Y, Ma G, Zhang Y, et al. Microsystem Technologies, 2021, 27, 673.
19 Lin C T, Liao L D, Liu Y H, et al. IEEE Transactions on Biomedical Engineering, 2010, 58(5), 1200.
20 Gao K P, Shen G C, Zhao N, et al. IEEE Sensors Journal, 2020, 20(18), 10393.
21 Li Q, Mark R G, Clifford G D. Physiological Measurement, 2007, 29(1), 15.
22 Liu F, Liu C, Zhao L, et al. IEEE Access, 2018, 6, 41892.
23 Martínez J P, Almeida R, Olmos S, et al. IEEE Transactions on Biome-dical Engineering, 2004, 51(4), 570.
24 Makowski D, Pham T, Lau Z J, et al. Behavior Research Methods, 2021, 53(4), 1689.
25 Pincus S, Singer B H. Proceedings of the National Academy of Sciences, 1996, 93(5), 2083.
26 Pincus S M. Proceedings of the National Academy of Sciences, 1991, 88(6), 2297.
27 Richman J S, Moorman J R. American Journal of Physiology-heart and Circulatory Physiology, 2000, 278(6), H2039.
28 Lu F, Wang C, Zhao R, et al. Biosensors, 2018, 8(2), 31.
29 Merletti R, Cerone G L. Journal of Electromyography and Kinesiology, 2020, 54, 102440.
30 Cattarello P, Merletti R. In:2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Italy, 2016, pp. 1.
31 Xie J, Peng L, Wei L, et al. Medical & Biological Engineering & Computing, 2021, 59(10), 2073.
[1] 刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
[2] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed