Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110217-7    https://doi.org/10.11896/cldb.23110217
  金属与金属基复合材料 |
高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响
王喆锦, 王丽爽*, 麻忠宇, 董会, 姚建洮, 周勇
西安石油大学材料科学与工程学院,西安市高性能油气田材料重点实验室,油气田腐蚀防护与新材料陕西省高等学校重点实验室,西安 710065
Effect of High Temperature Thermal Exposure on Pore Structure and Mechanical Properties of Plasma Sprayed YSZ
WANG Zhejin, WANG Lishuang*, MA Zhongyu, DONG Hui, YAO Jiantao, ZHOU Yong
Xi’an Key Laboratory of High Performance Materials for Oil and Gas Fields, Key Laboratory of Corrosion Protection and New Materials for Oil and Gas Fields, School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 18386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用大气等离子喷涂工艺在不同喷涂距离下制备YSZ涂层,并在1 300 ℃下进行不同时间高温热暴露。表征了喷涂态以及热暴露过程中涂层微观结构(表观孔隙率、2D孔隙密度、3D孔隙率)和力学性能(硬度、弹性模量)的变化。结果表明,当喷涂距离增大时,喷涂态涂层内部表观孔隙率、2D孔隙密度以及3D孔隙率均增大,且涂层中3D孔隙占比增大。对于同一喷涂距离的涂层,高温热暴露后,3D孔隙率变化较小,表观孔隙率和2D孔隙密度显著下降,涂层硬度和弹性模量显著增加。涂层硬度、弹性模量、表观孔隙率和2D孔隙密度随热暴露时间变化均呈现双阶段演变过程,0~20 h变化显著,20~100 h变化逐渐缓慢。涂层相结构分析表明,热暴露期间涂层相结构并未发生明显变化。涂层在高温下热暴露100 h后,表观孔隙率和2D孔隙密度约分别降低35.8%和68.2%,涂层硬度和弹性模量约分别增加78.5%和81%,3D孔隙约降低8.6%。热暴露过程中2D孔隙愈合主导了涂层的烧结致密化,最终导致涂层力学性能发生变化。随着喷涂距离增加3D孔隙占比增大,热暴露后涂层硬度及弹性模量的增量减少。因此,当涂层内部3D孔隙占比越多时,涂层抗烧结能力增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王喆锦
王丽爽
麻忠宇
董会
姚建洮
周勇
关键词:  等离子喷涂YSZ  热障涂层  热暴露  孔隙结构  力学性能    
Abstract: YSZ coatings were prepared by atmospheric plasma spray (APS) at different spraying distances and exposed to high temperature at 1 300 ℃ for different hours. The microstructure (apparent porosity, 2D porosity and 3D porosity) and mechanical properties (hardness and elastic modulus) of the YSZ coatings before and after thermal exposure were characterized. The results show that the apparent porosity, 2D pore density and 3D porosity of as-deposited coatings increased with the increase of spray distance, and the proportion of 3D pores in the coating increases. The apparent porosity and 2D porosity density of YSZ coatings deposited at the same spray distance decreased significantly and the 3D porosity remained stable after high temperature thermal exposure. Accordingly, the hardness and elastic modulus of YSZ coating after high temperature thermal exposure also increased significantly. Hardness, elastic modulus, apparent porosity and 2D pore density of coatings showed a two-stage evolution process during thermal exposure. All of them changed greatly from 0 h to 20 h, and changed slowly from 20 h to 100 h. Phase structure of coatings after thermal exposure was similar with as-deposited coatings. After 100 h thermal exposure, the apparent porosity and 2D porosity density decreased by about 35.8% and 68.2%, the hardness and elastic modulus increased by about 78.5% and 81%, respectively, by comparison, the 3D porosity decreased by only 8.6%. The healing of 2D pore during thermal exposure dominated the sintering densification of the coating. As a result, the mechanical properties of the coating changed. With the increase of spraying distance, the increase of 3D porosity increases, and the increment of coating hardness and elastic modulus decreases after thermal exposure. Therefore, the proportion of 3D pores in the coating is more, the better the anti-sintering performance of APS YSZ coatings.
Key words:  plasma spraying YSZ    thermal barrier coating    thermal exposure    pore structure    mechanical property
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51901181);陕西省摩擦焊接重点实验室开放课题,西安石油大学研究生创新与实践能力培养计划资助项目(YCS21212137)
通讯作者:  *王丽爽,西安石油大学材料科学与工程学院副教授、硕士研究生导师。主要研究方向包括热障涂层的结构调控、隔热性能和抗腐蚀性能以及长寿命服役性能,同时在多孔/致密功能涂层的低温制备领域也有一定的研究。lswang@xsyu.edu.cn   
作者简介:  王喆锦,西安石油大学材料科学与工程学院硕士研究生,在王丽爽副教授的指导下进行研究。目前主要研究领域为热喷涂方向。
引用本文:    
王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
WANG Zhejin, WANG Lishuang, MA Zhongyu, DONG Hui, YAO Jiantao, ZHOU Yong. Effect of High Temperature Thermal Exposure on Pore Structure and Mechanical Properties of Plasma Sprayed YSZ. Materials Reports, 2025, 39(4): 23110217-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110217  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110217
1 Zhao L S, Zhong S M, Wang X W. Gas Turbine Technology, 2017, 30(3), 27 (in Chinese).
赵龙生, 钟史明, 王肖祎. 燃气轮机技术, 2017, 30(3), 27.
2 Han D J, Hao L, Bi C X, et al. Journal of Vibration and Shock, 2021, 40(4), 87 (in Chinese).
韩东江, 郝龙, 毕春晓, 等. 振动与冲击, 2021, 40(4), 87.
3 Thakare J G, Pandey C, Mahapatra M M, et al. Metals and Materials International, 2021, 27(7), 1947.
4 Wei Z Y, Meng G H, Chen L, et al. Journal of Advanced Ceramics, 2022, 11(7), 985.
5 Padture N P. Nature Materials, Nature Publishing Group, 2016, 15(8), 804.
6 Bakan E, Vaßen R. Journal of Thermal Spray Technology, 2017, 26(6), 992.
7 Guo H B, Gong S K, Xu H B. Materials China, 2009, 28(Z2), 18 (in Chinese).
郭洪波, 宫声凯, 徐惠彬. 中国材料进展, 2009, 28(Z2), 18.
8 Darolia R. International Materials Reviews, Taylor & Francis, 2013, 58(6), 315.
9 Padture N P, Gell M, Jordan E H. American Association for the Advancement of Science, 2002, 296(5566), 280.
10 Clarke D R, Oechsner M, Padture N P. MRS Bulletin, 2012, 37(10), 891.
11 Zhang B Y, Meng G H, Yang G J, et al. Applied Surface Science, 2017, 397, 125.
12 Zhang B Y, Shi J, Yang G J, et al. Journal of Thermal Spray Technology, 2015, 24(4), 611.
13 Dong H, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2014, 97(4), 1226.
14 Trice R W, Su Y J, Mawdsley J R, et al. Journal of Materials Science, 2002, 37(11), 2359.
15 Li G R, Xie H, Yang G J, et al. Journal of the American Ceramic Society, 2017, 100(5), 2176.
16 Li C J, Wang W Z. Materials Science and Engineering: A, 2004, 386(1), 10.
17 Li C J, Li Y, Yang G J, et al. Journal of Thermal Spray Technology, 2012, 21(3), 383.
18 Sun J Y, Pei Y L, Li S S, et al. Rare Metals, 2017, 36(7), 556.
19 Chevallier J, Isern L, Almandoz F K, et al. Emergent Materials, 2021, 4(6), 1499.
20 Dong H, Yang G J, Cai H N, et al. Ceramics International, 2015, 41(3, Part A), 3481.
21 Lima R S, Marple B R. Materials Science and Engineering: A, 2008, 485(1), 182.
22 Lima R S, Marple B R. Journal of Thermal Spray Technology, 2008, 17(5), 846.
23 Cheng B, Zhang Y M, Yang N, et al. Journal of the American Ceramic Society, 2017, 100(5), 1820.
24 Li T J, Li Y, Li W, et al. Materials Protection, 2017, 50(9), 23 (in Chinese).
李太江, 李勇, 李巍, 等. 材料保护, 2017, 50(9), 23.
25 Tang C H, Li G R, Liu M J, et al. China Surface Engineering, 2020, 33(2), 119 (in Chinese).
唐春华, 李广荣, 刘梅军, 等. 中国表面工程, 2020, 33(2), 119.
26 Eriksson R, Brodin H, Johansson S, et al. Surface and Coatings Technology, 2011, 205(23), 5422.
27 Xing Y Z, Wang K, Feng X, et al. Journal of Thermal Spray Technology, 2019, 28(8), 1995.
28 Li G R, Yang G J, Li C X, et al. Ceramics International, 2018, 44(3), 2982.
29 Liu T, Luo X T, Chen X, et al. Journal of Thermal Spray Technology, 2015, 24(5), 739.
30 Zhang B, Li G R, Xu T, et al. Journal of Aeronautical Materials, 2022, 42(1), 1 (in Chinese).
张博, 李广荣, 徐彤, 等. 航空材料学报, 2022, 42(1), 1.
31 Li G R, Yang G J, Li C X, et al. Journal of the European Ceramic Society, 2018, 38(9), 3325.
32 Paul S, Cipitria A, Tsipas S A, et al. Surface and Coatings Technology, 2009, 203(8), 1069.
33 Li C J, Ohmori A. Journal of Thermal Spray Technology, 2002, 11(3), 365.
34 Erk K A, Deschaseaux C, Trice R W. Journal of the American Ceramic Society, 2006, 89(5), 1673.
35 Kuczynski G C. Springer, Dordrecht, 1949, 185(2), 169.
36 Li G R, Yang G J. Advanced Ceramics, 2018, 39(5), 321 (in Chinese).
李广荣, 杨冠军. 现代技术陶瓷, 2018, 39(5), 321.
37 Yang G J, Chen Z L, Li C X, et al. Journal of Thermal Spray Technology, 2013, 22(8), 1294.
38 Zhou Y C, Hashida T. International Journal of Solids and Structures, 2001, 38(24), 4235.
39 Chen L, Yang G J. Journal of Advanced Ceramics, 2018, 7(1), 17.
40 Chen L, Yang G J. Journal of Thermal Spray Technology, 2018, 27(3), 255.
[1] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[2] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[3] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[4] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[5] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[6] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[7] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[8] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[9] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[10] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[11] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[14] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[15] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed