Preparation of a Highly Sensitive, Strongly Adhesive Conductive Hydrogel and Its Application in Flexible Sensing
ZHAO Tingyu1, SHAO Liang1,2,*, JI Zhanyou1, HE Yinkun1, WANG Guangjing1, ZHANG Tao1
1 School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China 2 Key Laboratory of Light Industry and Chemical Additives in China, Shaanxi University of Science and Technology, Xi’an 710021, China
Abstract: Conductive hydrogels have good application prospects in the fields of human-computer interaction and electronic skin owing to their excellent toughness and biocompatibility. However, more excellent adhesion and sensitivity are needed in practical application scenarios to get accurate response signals. In this work, a conductive hydrogel was rapidly polymerized by copolymerization of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) through sulfhydryl attacking on the carbon-carbon double bond under ultraviolet illumination. Its adhesion strength to porcine skin reached 525 kPa and to aluminum sheet was up to 817 kPa. Different from the traditional preparation methods, the electrical conductivity of the hydrogel prepared in this work without adding any conductive fillers reaches 1.08 S/m, and the gauge factor (GF) reaches 9.28, which avoided the problems of poor mechanical properties and low sensitivity due to the uneven dispersion of conductive fillers. In addition, the hydrogel is frost-resistant and can still work normally at -60 ℃. Owing to the high sensitivity and strong adhesion, the P(AMPS-co-AM) hydrogel can be used as a flexible stress or strain sensor to accurately detect small or large movements in different parts of the human body, with accurate responsiveness and excellent stability, which has great potential for application in the fields of electronic skin and flexible wearable devices.
1 Jin L, Li Z, Liu Z, et al. npj Flexible Electronics, 2022, 6(1), 74. 2 Song H, Sun Y, Zhu J, et al. Composites Part B: Engineering, 2021, 217, 108901. 3 Zhang X, Zhang G, Zhang H, et al. Chemical Engineering Journal, 2020, 382, 122849. 4 Xie X H, Li Y, Zhang M Y, et al. Chemical Engineering Journal, 2022, 443, 136437. 5 Lin Z W, Zhang G Q, Xiao X, et al. Advanced Functional Materials, 2021, 32(9), 2109430. 6 Guo Y H, Bae J, Zhao F, et al. Trends in Chemistry, 2019, 1(3), 335. 7 Guo X K, Yang F, Liu W B, et al. Journal of Materials Chemistry A, 2021, 9(26), 14806. 8 Yin J, Reddy V S, Chinnappan A, et al. Polymer Reviews, 2023, 63(3), 715. 9 Pang Q, Hu H T, Zhang H Q, et al. ACS Applied Materials & Interfaces, 2022, 14, 26536. 10 Wang S, Xu Q C, Sun H, et al. Advanced Fiber Materials, 2022, 4(3), 324. 11 Wang M, Bai J, Shao K, et al. International Journal of Polymer Science, 2021, 2021, 1. 12 Vu C, Truong T, Kim J, et al. Materials Today Physics, 2022, 27, 100795. 13 Zhou H W, Zhao C, Zhao Z Y, et al. Rare Metals, 2024, 43(3), 1186. 14 Zhu T X, Ni Y M, Biesold G M, et al. Chemical Society Reviews, 2023, 52(2), 473. 15 Ning X, Huang J, Yuan N, et al. International Journal of Molecular Sciences, 2022, 23(24), 15757. 16 Ge G, Lu Y, Qu X, et al. ACS Nano, 2019, 14(1), 218. 17 Guan Q F, Yang H B, Han Z M, et al. ACS Nano, 2021, 15(5), 7889. 18 Li G, Li C, Li G, et al. Small, 2022, 18(5), 2101518. 19 Ren J, Liu Y, Wang Z, et al. Advanced Functional Materials, 2022, 32(13), 2107404. 20 Mo F, Huang Y, Li Q, et al. Advanced Functional Materials, 2021, 31(28), 2010830. 21 Zhao W, Zhang D, Yang Y, et al. Journal of Materials Chemistry A, 2021, 9(38), 22082. 22 Ji D, Park J M, Oh M S, et al. Nature Communications, 2022, 13(1), 3019. 23 Freedman B R, Uzun O, Luna N M M, et al. Advanced Materials, 2021, 33(17), 2008553. 24 Lee Y W, Chun S, Son D, et al. Advanced Materials, 2022, 34(13), 2109325. 25 Fu F F, Wang J L, Zeng H B, et al. ACS Materials Letters, 2020, 2(10), 1287. 26 Xue X, Hu Y, Deng Y, et al. Advanced Functional Materials, 2021, 31(19), 2009432. 27 Sun H, Zhao Y, Wang C, et al. Nano Energy, 2020, 76, 105035. 28 Xu W, Liu C, Wu Q, et al. Journal of Materials Chemistry A, 2020, 8(35), 18327. 29 Tang L, Wu S, Qu J, et al. Materials, 2020, 13(18), 3947. 30 Ou X, Liu Q, Pan J, et al. Chemical Engineering Journal, 2022, 435, 135051. 31 Hsiao L Y, Jing L, Li K, et al. Carbon, 2020, 161, 784. 32 Li X, Jiang M, Du Y, et al. Materials Horizons, 2023, 10(8), 2945. 33 Shuai L, Guo Z H, Zhang P, et al. Nano Energy, 2020, 78, 105389. 34 Xia X, Liang Q, Sun X, et al. Advanced Functional Material, 2022, 32(48), 2208024. 35 Shi W, Wang Z, Song H, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 35114. 36 Song Y, Niu L, Ma P, et al. ACS Applied Materials & Interfaces, 2023, 15(7), 10006. 37 Li M, Chen X, Li X, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 43323. 38 Yan Y, Xu S, Liu H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124622. 39 Liu X, Zhang Q, Gao Z, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17645. 40 Fan X, Wang S, Fang Y, et al. Materials Science and Engineering: C, 2020, 109, 110649. 41 Cao L H, Hu Y L, Yu Z. Chemistry and Adhesion, 2017, 39(4), 301 (in Chinese). 曹龙海, 胡永玲, 于振. 化学与粘合, 2017, 39(4), 301. 42 Sadeghianmaryan A, Naghieh S, Salimi A, et al. Journal of Natural Fibers, 2022, 19(16), 12718. 43 Yang F, Zhao J, Koshut W J, et al. Advanced Functional Materials, 2020, 30(36), 2003451.