Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010212-11    https://doi.org/10.11896/cldb.24010212
  高分子与聚合物基复合材料 |
高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用
赵庭煜1, 邵亮1,2,*, 姬占有1, 何寅坤1, 王广静1, 张涛1
1 陕西科技大学化学与化工学院,西安 710021
2 陕西科技大学中国轻工业轻化工助剂重点实验室,西安 710021
Preparation of a Highly Sensitive, Strongly Adhesive Conductive Hydrogel and Its Application in Flexible Sensing
ZHAO Tingyu1, SHAO Liang1,2,*, JI Zhanyou1, HE Yinkun1, WANG Guangjing1, ZHANG Tao1
1 School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
2 Key Laboratory of Light Industry and Chemical Additives in China, Shaanxi University of Science and Technology, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 53282KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电水凝胶由于优异的韧性与生物相容性,在人机交互、电子皮肤领域有良好的应用前景,然而在实际的应用场景中为了得到准确响应的信号则需要更优异的粘附性和灵敏度。本工作以2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酰胺(AM)共聚制备了导电水凝胶材料,该水凝胶在紫外光照条件下通过巯基攻击碳碳双键快速聚合。其对猪皮肤的粘附强度达到525 kPa,对铝片的粘附强度高达817 kPa。区别于传统的制备方法,本工作在不添加任何导电填料的条件下所制得水凝胶的电导率达到1.08 S/m,且灵敏度因子(GF)达到9.28,避免了因导电填料分散不均而导致的力学性能差且灵敏度不高的问题。此外,该水凝胶有良好的抗冻性,即使在-60 ℃的条件下仍能正常工作。得益于高灵敏度和强粘附性,P(AMPS-co-AM)水凝胶可组装成柔性应力或应变传感器精确地检测人体不同部位的微小与大幅度动作,具有准确响应性和良好稳定性,在电子皮肤及柔性可穿戴设备领域有很大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵庭煜
邵亮
姬占有
何寅坤
王广静
张涛
关键词:  粘附性  灵敏度  导电水凝胶  快速聚合  抗冻性    
Abstract: Conductive hydrogels have good application prospects in the fields of human-computer interaction and electronic skin owing to their excellent toughness and biocompatibility. However, more excellent adhesion and sensitivity are needed in practical application scenarios to get accurate response signals. In this work, a conductive hydrogel was rapidly polymerized by copolymerization of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) through sulfhydryl attacking on the carbon-carbon double bond under ultraviolet illumination. Its adhesion strength to porcine skin reached 525 kPa and to aluminum sheet was up to 817 kPa. Different from the traditional preparation methods, the electrical conductivity of the hydrogel prepared in this work without adding any conductive fillers reaches 1.08 S/m, and the gauge factor (GF) reaches 9.28, which avoided the problems of poor mechanical properties and low sensitivity due to the uneven dispersion of conductive fillers. In addition, the hydrogel is frost-resistant and can still work normally at -60 ℃. Owing to the high sensitivity and strong adhesion, the P(AMPS-co-AM) hydrogel can be used as a flexible stress or strain sensor to accurately detect small or large movements in different parts of the human body, with accurate responsiveness and excellent stability, which has great potential for application in the fields of electronic skin and flexible wearable devices.
Key words:  adhesion    sensitivity    conductivity hydrogels    rapidly copolymerized    frost-resistant
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TO632  
基金资助: 国家自然科学基金面上项目(52373039);西安市科技计划项目(22GXFW0001);陕西省创新能力支撑计划(2021TD-16);陕西省教育厅服务地方科研计划(23JC018)
通讯作者:  *邵亮,博士,陕西科技大学化学与化工学院教授、博士研究生导师,澳大利亚卧龙岗大学访问学者。目前主要从事柔性传感材料的设计及功能性聚合物发泡材料研究工作。shaoliang@sust.edu.cn   
作者简介:  赵庭煜,陕西科技大学化学与化工学院硕士研究生,在邵亮教授的指导下进行研究。目前主要从事导电水凝胶柔性应变传感器的制备与性能研究。
引用本文:    
赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
ZHAO Tingyu, SHAO Liang, JI Zhanyou, HE Yinkun, WANG Guangjing, ZHANG Tao. Preparation of a Highly Sensitive, Strongly Adhesive Conductive Hydrogel and Its Application in Flexible Sensing. Materials Reports, 2025, 39(4): 24010212-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010212  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010212
1 Jin L, Li Z, Liu Z, et al. npj Flexible Electronics, 2022, 6(1), 74.
2 Song H, Sun Y, Zhu J, et al. Composites Part B: Engineering, 2021, 217, 108901.
3 Zhang X, Zhang G, Zhang H, et al. Chemical Engineering Journal, 2020, 382, 122849.
4 Xie X H, Li Y, Zhang M Y, et al. Chemical Engineering Journal, 2022, 443, 136437.
5 Lin Z W, Zhang G Q, Xiao X, et al. Advanced Functional Materials, 2021, 32(9), 2109430.
6 Guo Y H, Bae J, Zhao F, et al. Trends in Chemistry, 2019, 1(3), 335.
7 Guo X K, Yang F, Liu W B, et al. Journal of Materials Chemistry A, 2021, 9(26), 14806.
8 Yin J, Reddy V S, Chinnappan A, et al. Polymer Reviews, 2023, 63(3), 715.
9 Pang Q, Hu H T, Zhang H Q, et al. ACS Applied Materials & Interfaces, 2022, 14, 26536.
10 Wang S, Xu Q C, Sun H, et al. Advanced Fiber Materials, 2022, 4(3), 324.
11 Wang M, Bai J, Shao K, et al. International Journal of Polymer Science, 2021, 2021, 1.
12 Vu C, Truong T, Kim J, et al. Materials Today Physics, 2022, 27, 100795.
13 Zhou H W, Zhao C, Zhao Z Y, et al. Rare Metals, 2024, 43(3), 1186.
14 Zhu T X, Ni Y M, Biesold G M, et al. Chemical Society Reviews, 2023, 52(2), 473.
15 Ning X, Huang J, Yuan N, et al. International Journal of Molecular Sciences, 2022, 23(24), 15757.
16 Ge G, Lu Y, Qu X, et al. ACS Nano, 2019, 14(1), 218.
17 Guan Q F, Yang H B, Han Z M, et al. ACS Nano, 2021, 15(5), 7889.
18 Li G, Li C, Li G, et al. Small, 2022, 18(5), 2101518.
19 Ren J, Liu Y, Wang Z, et al. Advanced Functional Materials, 2022, 32(13), 2107404.
20 Mo F, Huang Y, Li Q, et al. Advanced Functional Materials, 2021, 31(28), 2010830.
21 Zhao W, Zhang D, Yang Y, et al. Journal of Materials Chemistry A, 2021, 9(38), 22082.
22 Ji D, Park J M, Oh M S, et al. Nature Communications, 2022, 13(1), 3019.
23 Freedman B R, Uzun O, Luna N M M, et al. Advanced Materials, 2021, 33(17), 2008553.
24 Lee Y W, Chun S, Son D, et al. Advanced Materials, 2022, 34(13), 2109325.
25 Fu F F, Wang J L, Zeng H B, et al. ACS Materials Letters, 2020, 2(10), 1287.
26 Xue X, Hu Y, Deng Y, et al. Advanced Functional Materials, 2021, 31(19), 2009432.
27 Sun H, Zhao Y, Wang C, et al. Nano Energy, 2020, 76, 105035.
28 Xu W, Liu C, Wu Q, et al. Journal of Materials Chemistry A, 2020, 8(35), 18327.
29 Tang L, Wu S, Qu J, et al. Materials, 2020, 13(18), 3947.
30 Ou X, Liu Q, Pan J, et al. Chemical Engineering Journal, 2022, 435, 135051.
31 Hsiao L Y, Jing L, Li K, et al. Carbon, 2020, 161, 784.
32 Li X, Jiang M, Du Y, et al. Materials Horizons, 2023, 10(8), 2945.
33 Shuai L, Guo Z H, Zhang P, et al. Nano Energy, 2020, 78, 105389.
34 Xia X, Liang Q, Sun X, et al. Advanced Functional Material, 2022, 32(48), 2208024.
35 Shi W, Wang Z, Song H, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 35114.
36 Song Y, Niu L, Ma P, et al. ACS Applied Materials & Interfaces, 2023, 15(7), 10006.
37 Li M, Chen X, Li X, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 43323.
38 Yan Y, Xu S, Liu H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124622.
39 Liu X, Zhang Q, Gao Z, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17645.
40 Fan X, Wang S, Fang Y, et al. Materials Science and Engineering: C, 2020, 109, 110649.
41 Cao L H, Hu Y L, Yu Z. Chemistry and Adhesion, 2017, 39(4), 301 (in Chinese).
曹龙海, 胡永玲, 于振. 化学与粘合, 2017, 39(4), 301.
42 Sadeghianmaryan A, Naghieh S, Salimi A, et al. Journal of Natural Fibers, 2022, 19(16), 12718.
43 Yang F, Zhao J, Koshut W J, et al. Advanced Functional Materials, 2020, 30(36), 2003451.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[5] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[6] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
[7] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[8] 陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
[9] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[10] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[11] 郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
[12] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[13] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[14] 齐云鹏, 王秋生, 秦力, 商效瑀. MU10再生混凝土承重砌块力学性能与抗冻性试验研究[J]. 材料导报, 2024, 38(11): 22070011-7.
[15] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed