Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22070144-5    https://doi.org/10.11896/cldb.22070144
  无机非金属及其复合材料 |
混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响
戈雪良1,2,3,*, 柯敏勇1, 刘伟宝1, 陆采荣1,3, 王珩1, 梅国兴1, 杨虎1
1 南京水利科学研究院,南京 210029
2 水文水资源与水利工程科学国家重点实验室,南京 210029
3 水利部应对气候变化研究中心,南京 210029
The Evolution of Freezing Stress in Concrete Under Freeze-thaw Condition and Its Influence on Frost Resistance
GE Xueliang1,2,3,*, KE Minyong1, LIU Weibao1, LU Cairong1,3, WANG Heng1, MEI Guoxing1, YANG Hu1
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China
3 Research Center for Climate Change, MWR, Nanjing 210029, China
下载:  全 文 ( PDF ) ( 15771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究严寒地区混凝土冻害机理及冻结应力对混凝土抗冻性的影响,基于大型极端气候模拟器模拟-40 ℃低温冻害的条件,采用研制的冻结应力测试装置对F300高抗冻等级混凝土在冻融单次降温阶段及降温-升温冻融循环两种模式下的冻结应力及抗冻性能进行研究,同时利用了环境扫描电子显微镜对冻融循环作用下的混凝土微观裂缝进行了测试研究。研究表明:-40 ℃单次降温过程中降温速率越快,冻结应力出现的时间越早、混凝土内部产生的冻结应力增幅也越大;冻融循环降温阶段产生的冻结应力会随降温-升温冻融作用的不断循环而累积增大,且冻结应力的发展存在转变拐点,在相同降温终了试件中心低温条件下,降温阶段的降温速率越大,冻结应力由增加转入减小的拐点出现越早;冻融过程中的冻结应力与混凝土质量损失、相对动弹性模量两个抗冻性常用评价指标有较好的对应关系;冻结应力逐步使水泥浆体产生损伤,表现为微观裂缝的生成与发展,损伤积聚产生冻害。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戈雪良
柯敏勇
刘伟宝
陆采荣
王珩
梅国兴
杨虎
关键词:  混凝土  冻融循环  冻结应力  演化规律  抗冻性能  作用机制    
Abstract: In order to explore the freezing damage mechanism of concrete in severe cold area and the action mechanism of freezing stress affecting the frost resistance of concrete, based on the simulation of -40 ℃ low-temperature freezing damage condition by large-scale extreme climate simulator, the freezing stress and frost resistance of F300 high frost resistance design concrete under single cooling stage and cooling heating freezing and thawing cycle were studied by using the developed freezing stress test system. At the same time, the microstructure of concrete under freeze-thaw cycle was studied by environmental scanning electron microscope. The experimental results demonstrate that in the single cooling process under -40 ℃ low-temperature, the faster the cooling rate is, the earlier the freezing stress appears, and the greater the increase of freezing stress in the concrete. The freezing stress generated in the cooling stage will accumulate and increase with the continuous cycle of freezing and thawing, and there is a transition inflection point in the development of freezing stress. Under the same low temperature condition in the center of the specimen at the end of cooling, the greater the cooling rate in the cooling stage, the earlier the inflection point from growth to reduction of freezing stress appears. There is a good correlation between the freezing stress in the process of freezing and thawing and the two commonly used evaluation indexes of concrete quality loss and relative dynamic elastic modulus. The freezing stress gradually causes damage to the cement paste, which is manifested in the formation and development of micro cracks, and the damage accumulation produces freezing damage.
Key words:  concrete    freeze-thaw cycle    freezing stress    evolutionary    frost resistance    mechanism
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU5  
基金资助: 国家重点研发计划项目(2022YFC3202500);国家自然科学基金重点项目(11932006);国家自然科学基金面上项目(51579155)
通讯作者:  *戈雪良,水利部交通运输部国家能源局南京水利科学研究院正高级工程师、博士研究生导师。2008年武汉大学水工结构工程专业博士毕业。目前主要从事气候变化与水工程安全,水工混凝土耐久性领域的研究工作。xlge@nhri.cn   
引用本文:    
戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
GE Xueliang, KE Minyong, LIU Weibao, LU Cairong, WANG Heng, MEI Guoxing, YANG Hu. The Evolution of Freezing Stress in Concrete Under Freeze-thaw Condition and Its Influence on Frost Resistance. Materials Reports, 2024, 38(12): 22070144-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070144  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22070144
1 Ministry of Water Resources of the People's Republic of China, National Bureau of Statistics of the People's Republic of China. First national water census bulletin, China Water & Power Press, China, 2013, pp. 3 (in Chinese).
中华人民共和国水利部, 中华人民共和国国家统计局. 第一次全国水利普查公报, 中国水利水电出版社, 2013, pp.3.
2 Ma K L, Wang Z Z, Long G C, et al. Materials Reports, 2021, 35(19), 19091 (in Chinese).
马昆林, 王中志, 龙广成, 等. 材料导报, 2021, 35(19), 19091.
3 Xie R F, Lu L J, Qiao P Z. Scientia Sinaca Technologica, 2018, 48(10), 1092 (in Chinese).
谢瑞峰, 陆林军, 乔丕忠. 中国科学:技术科学, 2018, 48(10), 1092.
4 Li S G, Chen G X, Lu Y H. Journal of Hydraulic Engineering, 2013, 44(S1), 80 (in Chinese).
李曙光, 陈改新, 鲁一晖. 水利学报, 2013, 44(S1), 80.
5 Mayercsik N P, Vandanune M, Kurds K E. Cement and Concrete Research, 2016, 88, 43.
6 Su H Z, Xie W. Bulletin of the Chinese Ceramic Society, 2021, 40(4), 1053 (in Chinese).
苏怀智, 谢威. 硅酸盐通报, 2021, 40(4), 1053.
7 戈雪良, 陆采荣, 梅国兴, 等. 中国专利, CN107290090A, 2017.
8 Ge X L, Lu C R, Mei G X. Materials Reports, 2020, 34(4), 8051 (in Chinese).
戈雪良, 陆采荣, 梅国兴. 材料导报, 2020, 34(4), 8051.
9 Kaufmann J P. Cement and Concrete Research, 2004, 34(8), 1421.
10 陆采荣, 张建云, 戈雪良, 等. 中国专利, ZL201210256518. 2, 2013.
11 Li W T, Sun W, Jiang J Y. Construction and Building Materials, 2011, 25(5), 2604.
12 Penttala V. Cement and Concrete Research, 2002, 32(9), 1407.
13 Bjorn Johannesson. Cement and Concrete Research, 2010, 32, 73.
14 戈雪良, 陆采荣, 梅国兴, 等. 中国专利, ZL201721045566.1, 2018.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[12] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[13] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[14] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[15] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed