Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120019-9    https://doi.org/10.11896/cldb.23120019
  新型高性能磷酸镁胶凝材料 |
高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能
陈歆1, 刘文1, 崔安琪1, 郑海涛2, 黄馨1, 杨文萃1, 葛勇1,*
1 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
2 中铁七局集团郑州工程有限公司,郑州 450052
Mechanical Properties and Freeze-Thaw Cycling Resistance of Magnesium Phosphate Cement Mortar Prepared at Low Temperatures in Highland Regions
CHEN Xin1, LIU Wen1, CUI Anqi1, ZHENG Haitao2, HUANG Xin1, YANG Wencui1, GE Yong1,*
1 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Zhengzhou Engineering Co., Ltd., of China Railway Seventh Group, Zhengzhou 450052, China
下载:  全 文 ( PDF ) ( 8411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸镁水泥(MPC)砂浆因其低温下卓越的强度发展潜力和免于蓄热保湿养护的特性,特别适用于高寒地区破损混凝土结构的修补工作。研究采用现场试验的办法,以成型温度、镁磷质量比、养护制度为变量,跟踪不同龄期下不同条件的磷酸镁水泥砂浆的抗折与抗压强度,厘清了高海拔地区低温成型磷酸镁水泥砂浆力学性能的发展规律。研究又以成型海拔、成型温度、镁磷质量比为变量,以气泡结构和水饱和度为中间指标,以单面盐冻中质量剥蚀和快速冻融循环中相对质量及相对动弹性模量的变化为直接指标,剖析了高海拔地区低温成型磷酸镁水泥砂浆抗冻性能的影响因素。研究结果表明,自然养护相较恒定低温养护对早期强度发展有利,但对后期强度发展有不良影响。低温环境下成型有利于自然养护的磷酸镁水泥砂浆的后期强度。成型海拔、成型温度和镁磷质量比与砂浆的含气量呈负相关,与砂浆的气泡间距系数和水饱和度呈正相关。试验条件下,这三个变量的值越小,砂浆的抗冻性越好。-10 ℃成型,镁磷质量比为4对砂浆强度最有利;而-10 ℃成型,镁磷质量比为3对砂浆抗冻性最有利。这些研究成果为高寒地区磷酸镁水泥砂浆的工程应用提供了技术建议与理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈歆
刘文
崔安琪
郑海涛
黄馨
杨文萃
葛勇
关键词:  磷酸镁水泥  强度  气泡结构  抗冻性  低温  低气压    
Abstract: Magnesium phosphate cement mortar is particularly suitable for repairing damaged concrete structures in high-and-cold regions due to its outstanding strength development potential at low temperatures and its characteristic of not requiring heat retention and moisture preservation for curing. The study utilized on-site experimental methods, employing variables such as molding temperature, magnesium-phosphate mass ratio, and curing mode, to investigate the flexural and compressive strengths of magnesium phosphate cement mortar under various conditions at different ages, thereby clarifying the development patterns of its mechanical properties in high-altitude and low-temperature conditions. Further, the study identified the factors affecting the freeze-thaw cycling resistance of magnesium phosphate cement mortar formed at low temperatures in high-altitude regions, using molding altitude, temperature, and magnesium-phosphate mass ratio as variables, and air-void structure and water saturation as intermediate indicators. The scaled mass of the surface exposed to salt solution during unilateral freeze-thaw cycles and changes in relative mass and dynamic elastic modulus during freeze-thaw cycles were used as direct indicators. The findings reveal that natural curing, compared to constant low-temperature curing, is beneficial for early strength development but has a negative impact on later strength development. Low-temperature forming benefits the later strength of magnesium phosphate cement mortar under natural curing. Each of the molding altitude, temperature, and magnesium-phosphate mass ratio of mortar negatively correlates with the air content, but positively correlates with the air-void bubble spacing coefficient and water saturation. Under experimental conditions, lower values of these three variables enhance the mortar's freeze-thaw cycling resistance. A molding temperature of -10 ℃ with a magnesium-phosphate mass ratio of 4 is most beneficial for mortar strength, while a ratio of 3 is most advantageous for freeze-thaw cycling resistance. These research outcomes provide technical recommendations and theoretical support for the application of magnesium phosphate cement mortar in high-and-cold regions.
Key words:  magnesium phosphate cement    strength    air-void structure    freeze-thaw cycling resistance    low temperature    low atmospheric pressure
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528.31  
基金资助: 西藏自治区交通运输厅科技项目(XZJTKJ2020[04])
通讯作者:  *葛勇,哈尔滨工业大学交通科学与工程学院教授、博士研究生导师。1982年哈尔滨建筑工程学院材料系建筑材料专业本科毕业,1986年哈尔滨建筑工程学院材料系建筑材料专业硕士毕业后留校(现为哈尔滨工业大学)工作至今,2009年哈尔滨工业大学材料学专业博士毕业。目前主要从事高原混凝土方面的研究工作,发表论文130余篇,其中SCI、EI检索90余篇。hitbm@163.com   
作者简介:  陈歆,2010年6月、2015年12月分别于哈尔滨工业大学和巴斯大学获得工学学士学位和硕士学位。现为哈尔滨工业大学交通科学与工程学院博士研究生,在葛勇教授的指导下进行研究。目前主要研究领域为高原混凝土,以第一作者或通信作者发表论文16篇,其中SCI、EI检索9篇。
引用本文:    
陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
CHEN Xin, LIU Wen, CUI Anqi, ZHENG Haitao, HUANG Xin, YANG Wencui, GE Yong. Mechanical Properties and Freeze-Thaw Cycling Resistance of Magnesium Phosphate Cement Mortar Prepared at Low Temperatures in Highland Regions. Materials Reports, 2024, 38(17): 23120019-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120019  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120019
1 Zhou C H, Cheng W M, Qian J K, et al. Journal of Geo-Information Science, 2019, 11(6), 707 (in Chinese).
周成虎, 程维民, 钱金凯, 等. 地球信息科学学报, 2019, 11(6), 707.
2 Long X J, Li X J. Scientia Geographica Sinica, 2017, 37(10), 1577 (in Chinese).
龙晓君, 李小建. 地理科学, 2017, 37(10), 1577.
3 Chen X, Liu X, Tian B, et al. Materials, 2020, 13(18), 3975.
4 Ge X. The research on effect of plateau climatic conditions on concrete performance and cracking mechanism. Ph. D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
葛昕. 高原气候条件对混凝土性能及开裂机制影响的研究. 博士学位论文, 哈尔滨工业大学, 2019.
5 Zhong X H, Li H J, Ye Y S, et al. In:Symposium for 10th Anniversary of the Qinghai-Tibet Railway Service. Lhasa, 2016, pp.38 (in Chinese).
仲新华, 李化建, 叶阳升, 等. 青藏铁路运营十周年学术研讨会论文集. 拉萨, 2016, pp.38.
6 Tian B, Li L H, Ge Y, et al. Plateau concrete, China Communications Press, China, 2022, pp.1(in Chinese).
田波, 李立辉, 葛勇, 等. 高原混凝土, 中国交通出版社, 2022, pp.1.
7 Liu X, Chen X, Tian B, et al. Journal of the Chinese Ceramic Society, 2021, 49(8), 1743 (in Chinese).
刘旭, 陈歆, 田波, 等. 硅酸盐学报, 2021, 49(8), 1743.
8 Chen X, Liu X, Feng Y R, et al. Journal of Building Engineering, 2023, 72, 106663.
9 Wang P M, Li N, Xu L L, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 242 (in Chinese).
王培铭, 李楠, 徐玲琳, 等. 硅酸盐学报, 2017, 45(2), 242.
10 Lyu Y, Bai E L, Wang Z H, et al. Materials Reports, 2023, 37(Z2), 22090233 (in Chinese).
吕炎, 白二雷, 王志航, 等. 材料导报, 2023, 37(Z2), 22090233.
11 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
12 Jia X W, Li J M, Wang P, et al. Construction and Building Materials, 2019, 229, 116927.
13 Huang X M, Liu G D, Zheng Y Z Z, et al. Journal of Building Engineering, 2023, 76, 107278.
14 Yuan J, Zhang Z C, Chen X, et al. Concrete, 2022(8), 10 (in Chinese).
袁杰, 张志超, 陈歆, 等. 混凝土, 2022(8), 10.
15 Jia X W, Luo J Y, Zhang W X, et al. Materials, 2020, 13 (23), 5587.
16 Yuan J, Huang X, Chen X, et al. Construction and Building Materials, 2022, 345, 128337.
17 Yang Q B, Zhang S Q, Wu X L. Cement and Concrete Research, 2022, 32, 165.
18 Ma C, Chen B. Construction and Building Materials, 2016, 113, 255.
19 Zeng X H, Lan X L, Zhu H S, et al. Cement and Concrete Composites, 2021, 122, 104139.
20 Zuo S H, Yuan Q, Huang T J, et al. Cement and Concrete Composites, 2023, 135, 104848.
21 Liu X, Chen X, Li L H, et al. Journal of Harbin Institute of Technology, 2021, 53(9), 26 (in Chinese).
刘旭, 陈歆, 李立辉, 等. 哈尔滨工业大学学报, 2021, 53(9), 26.
22 Chen X, Liu X, Li L H, et al. Materials Reports, 2022, 36(12), 20100140 (in Chinese).
陈歆, 刘旭, 李立辉, 等. 材料导报, 2022, 36(12), 20100140.
23 Zhang A, Yang W C, Ge Y, et al. Construction and Building Materials, 2020, 249, 118787.
24 Materak K, Wieczorek A, Bednarska D, et al. Construction and Building Materials, 2023, 406, 133400.
25 Chen X, Liu X, Dong S H, et al. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(2), 202 (in Chinese).
陈歆, 刘旭, 董淑慧, 等. 西安建筑科技大学学报(自然科学版), 2021, 53(2), 202.
26 Ke G J, Zhang J, Tian B, et al. Cement and Concrete Research, 2020, 135, 106142.
27 He R, Yang Z, Gan V J L, et al. Journal of Cleaner Production, 2021, 321, 128783.
28 Lan X L, Zhu H S, Zeng X H, et al. Journal of Building Engineering, 2023, 69, 106179.
29 Shah H A, Yuan Q, Zuo S H. Construction and Building Materials, 2021, 274, 121835.
30 Chen X, Li L H, Liu X, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(4), 1220 (in Chinese).
陈歆, 李立辉, 刘旭, 等. 硅酸盐通报, 2021, 40(4), 1220.
31 Wang Y Z, Yang W C, Zhang A, et al. Cement and Concrete Research, 2024, 175, 107378.
32 Liao T C, Huang X, Yuan J, et al. Ceramics-Silikáty, 2022, 66(4), 540.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[5] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[6] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[7] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[8] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[9] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[10] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[11] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[12] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[13] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed