Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010162-15    https://doi.org/10.11896/cldb.24010162
  无机非金属及其复合材料 |
沥青化学组分与宏观性能靶向关系研究综述与展望
张宏飞1,2, 张久鹏1,2, 王帅3, 陈子璇1,2,*, 李哲1, 裴建中1,2
1 长安大学公路学院,西安 710064
2 长安大学特殊地区公路工程教育部重点实验室,西安 710064
3 陕西省交通规划设计研究院有限公司,西安 710065
Review and Prospect of the Target Relationship Between Chemical Components and Macroscopic Properties of Asphalt
ZHANG Hongfei1,2, ZHANG Jiupeng1,2, WANG Shuai3, CHEN Zixuan1,2,*, LI Zhe1, PEI Jianzhong1,2
1 School of Highway, Chang’an University, Xi’an 710064, China
2 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China
3 Shaanxi Transportation Planning Design and Research Institute Co., Ltd., Xi’an 710065, China
下载:  全 文 ( PDF ) ( 17250KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青复杂的微观组成特征与其宏观性能密切相关,且会随沥青材料服役时间推移发生改变,致使其性能表现出高度不确定性。以化学沥青组分为桥梁来搭建微观组成与宏观性能间的靶向关系,对高性能沥青路面材料的研发具有重要意义。本文系统地介绍和展望了沥青组分特征与宏观性能间的潜在关联,着重分析其对沥青路面材料优化设计的指导作用。首先,从微观组成视角回顾了沥青胶体结构理论、沥青质结构模型、化学组分分子结构模型研究进程及发展趋势;其次,总结了目前沥青化学组分常用的分离方法,并着重分析了饱和分、芳香分、胶质和沥青质的基础物理化学特性;综述了沥青工程指标、多温度域流变特性、热稳定性、老化及再生特性等宏观性能与沥青化学组分特征间的有机联系,进一步分析了沥青性能转变过程中各组分的迁移特征,揭示了沥青化学组分特征对宏观性能演变的影响机制,从而为未来沥青材料的靶向设计、靶向阻燃及靶向再生体系的构建提供一定参考。最后,提出了借助分子动力学模拟手段辅助沥青材料化学组分设计的方法,基于材料基因组思想展望了沥青化学组分特征与宏观性能关系研究的应用构想。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宏飞
张久鹏
王帅
陈子璇
李哲
裴建中
关键词:  道路工程  沥青化学组分  流变特性  老化机理  热稳定性  材料基因组理念    
Abstract: The complex chemical composition characteristics of asphalt are closely related to its pavement performance and will change with the service time of asphalt, resulting in a high degree of uncertainty in its performance. It is significant for the research and development of high-perfor-mance asphalt pavement materials to take the asphalt chemical components as a bridge to establish a targeting relationship between microscopic composition and macroscopic properties. This paper aims to systematically introduce and outlook the relationship between asphalt component characteristics and macroscopic properties, focusing on its guiding role in the optimal design of asphalt pavement materials. First, the research process and development trend of colloid structure theory, asphaltene structure modeling and molecular structure modeling of chemical components are reviewed from the micro-perspective. Second, the basic characteristics of saturate, aromatic, resin and asphaltene fractions and the commonly used separation methods are summarized. Then, the targeting relationships between the macroscopic properties of asphalt, including engineering index, multi-temperature domain rheological properties, thermal stability, aging properties, regeneration properties and the chemical component characteristics of asphalt are reviewed. The migration characteristics of the chemical components in the process of asphalt property transformation are analyzed and the mechanism of the chemical fractions on the evolution of macroscopic properties is revealed. This will provide some reference for the construction of targeted asphalt design, targeted flame-retardant and targeted regeneration systems. Finally, the design method of targeted chemical compositions of asphalt is proposed with the aid of molecular dynamics simulations of asphalt. The application conception for the relationship between chemical component characteristics and macroscopic properties of asphalt is proposed based on material genomic ideas.
Key words:  road engineering    asphalt chemical component    rheological property    aging mechanism    thermal stability    material genome concept
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  U414  
基金资助: 国家自然科学基金(51978068;52208416);中央高校基本科研业务费专项资金—长安大学优秀博士学位论文培育资助项目(300102213704)
通讯作者:  *陈子璇,长安大学公路学院副教授,硕士研究生导师。2019年长安大学公路学院道路与铁道工程专业博士毕业。目前主要从事路面材料多尺度行为演化、胶粉改性沥青性能提升等方面的研究。zixuanchen@chd.edu.cn   
作者简介:  张宏飞,2015年7月于山东科技大学获得工学学士学位,现为长安大学公路学院道路与铁道工程专业博士研究生,在裴建中教授的指导下开展研究工作。目前主要研究领域为路面材料多尺度表征与性能预测方面研究。
引用本文:    
张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
ZHANG Hongfei, ZHANG Jiupeng, WANG Shuai, CHEN Zixuan, LI Zhe, PEI Jianzhong. Review and Prospect of the Target Relationship Between Chemical Components and Macroscopic Properties of Asphalt. Materials Reports, 2025, 39(4): 24010162-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010162  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010162
1 Yang D, Yang C, Xie J, et al. Construction and Building Materials, 2020, 244, 118401.
2 Dai Z. Nano-structure and components of the recovered asphalt binders from weathered asphalt mixtures. Master’s Thesis, Suzhou University of Science and Technology, China, 2017 (in Chinese).
代震. 全气候老化沥青的组分和AFM微观结构研究. 硕士学位论文, 苏州科技大学, 2017.
3 Yang X Y, He L N, An M, et al. Petrochemical Technology, 2018, 47(2), 186 (in Chinese).
杨晓彦, 赫丽娜, 安谧, 等. 石油化工, 2018, 47(2), 186.
4 Zhao P H, Fan W Y, Zhang L B, et al. Journal of Dispersion Science and Technology, 2015, 36(5), 634.
5 Pereira J S F, Moraes D P, Antes F G, et al. Microchemical Journal, 2010, 96(1), 4.
6 Wiehe I A, Liang K S. Fluid Phase Equilibria, 1996, 117(1-2), 201.
7 Fu Z, Yan X L, Cai T, et al. Journal of Wuhan University of Technology, 2014, 36, 1.
8 Hofko B, Eberhardsteiner L, Füssl J, et al. Materials and Structures, 2015, 49(3), 829.
9 Mirwald J, Werkovits S, Camargo I, et al. Construction and Building Materials, 2020, 250, 118809.
10 He M S. Structure behaviors and properties characterization for paving asphalt. Master’s Thesis, Chang’an University, China, 2013 (in Chinese).
贺孟霜. 道路石油沥青结构行为与性能表征. 硕士学位论文, 长安大学, 2013.
11 Kang J Q. Study on the relationship between asphalt chemical structure and the macroscopic properties. Master’s Thesis, China University of Petroleum (EastChina), China, 2015 (in Chinese).
康剑翘. 沥青化学组成结构与宏观性质关联关系研究. 硕士学位论文, 中国石油大学(华东), 2015.
12 Gao G M, Guo N, Qian B. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(4), 69 (in Chinese).
高桂海, 郭宁, 钱波. 重庆交通大学学报(自然科学版), 2020, 39(4), 69.
13 Richardson C. The Modern Asphalt Pavement, John Wiley & Sons, USA, 1907.
14 Robertson R E. Chemical Properties of asphalts and their relationship to pavement performance, Strategic Highway Research Program, Washington DC, 1991.
15 Jing Y P. Journal of Chang’an University (Natural Science Edition), 2005(3), 33 (in Chinese).
景彦平. 长安大学学报(自然科学版), 2005(3), 33.
16 Corbett L W. Analytical Chemistry, 1969, 41(4), 576.
17 Luo H Y, Huang X M. China Journal of Highway and Transport, 2021, 34(10), 98 (in Chinese).
罗浩原, 黄晓明. 中国公路学报, 2021, 34(10), 98.
18 Ma X Y, Ma X J, Wang Z J, et al. Construction and Building Materials, 2023, 394, 132163.
19 Weigel S, Stephan D. Road Materials and Pavement Design, 2017, 19(7), 1636.
20 Planche J-P. In: 12th ISAP International Conference on Asphalt Pavements. Raleigh, 2014. p. 13.
21 Hu Y P, Si W, Kang X X, et al. Fuel, 2022, 326, 125045.
22 Yuan Y, Zhu X Y, Lee K Y, et al. Construction and Building Materials, 2020, 237, 117562.
23 Hao J H, Zong P J, Tian Y Y, et al. Energy Conversion and Management, 2019, 183, 485.
24 Fischer H R, Cernescu A. Fuel, 2015, 153, 628.
25 Zhang Q, Deng W A, Li C, et al. Petroleum Processing and Petrochemicals, 2014, 45(6), 20.
26 Mousavi M, Abdollahi T, Pahlavan F, et al. Fuel, 2016, 183, 262.
27 Wang J Y, Wang T, Hou X D, et al. Fuel, 2019, 238, 320.
28 Rosinger A. Colloid and Polymer Science, 1914, 15(5), 177.
29 FJ N. Bereiding on constitutie van asphalt. Ph. D. Thesis, Delft University, Netherland, 1923.
30 Mack C. The Journal of Physical Chemistry, 1932, 36(12), 2901.
31 Pfeiffer J P, Saal R N J. The Journal of Physical Chemistry, 1940, 44(2), 139.
32 Zhang M Y, Hao P W, Dong S, et al. Measurement, 2020, 151, 107255.
33 Gaestel C, Smadja R, Lamminan K. Rev Gentile Routes et Aérodromes, 1971, 466, 85.
34 Siddiqui M N, Ali M F. Fuel, 1999, 78(9), 1005.
35 Behnood A, Modiri G M. European Polymer Journal, 2019. 112, 766.
36 Xin J N, Li M, Li R, et al. Acs Sustainable Chemistry & Engineering, 2016, 4(5), 2754.
37 Liu P, Zhang D X, Wang L L, et al. Applied Energy, 2016, 163, 254.
38 Sadeghtabaghi Z, Rabbani A R, Hemmati-Sarapardeh A. Journal of Molecular Structure, 2021, 1238, 95.
39 Shi H Q, Xu T, Zhou P, et al. Construction and Building Materials, 2017, 136, 515.
40 Yen T F, Young D K. Carbon, 1973, 11(1), 33.
41 Mullins OC. Energy & Fuels, 2010, 24(4), 2179.
42 Hofko B, Eberhardsteiner L, Fuessl J, et al. Materials and Structures, 2016, 49(3), 829.
43 Jin D Z. Study on characteristics of asphalt performance under different ultraviolet radiation conditions. Master’s Thesis, Changsha University of Science and Technology, China, 2018 (in Chinese).
金大中. 不同紫外光照工况条件下沥青性能变化特征研究. 硕士学位论文, 长沙理工大学, 2018.
44 Wang Y J, Wang W T, Wang L B. Construction and Building Materials, 2022, 329, 127161.
45 Sun G Q, Niu Z X, Zhang J P, et al. Case Studies in Construction Materials, 2022, 17, e01581.
46 Loeber L, Sutton O, Morel J, et al. Journal of microscopy, 1996, 182(1), 32.
47 Pipintakos G, Hasheminejad N, Lommaert C, et al. Micron, 2021, 147, 103083.
48 Hasheminejad N, Pipintakos G, Vuye C, et al. Construction and Building Materials, 2021, 313, 125481.
49 Chen Z X, Pei J Z, Li R, et al. Construction and Building Materials, 2018, 189, 695.
50 Li D D, Greenfield M L. Fuel, 2014, 115(1), 347.
51 Guo F C, Pei J Z, Huang G J, et al. Construction and Building Materials, 2023, 371, 130781.
52 Fallah F, Khabaz F, Kim Y R, et al. Fuel, 2019, 237, 71.
53 Hu D L, Gu X Y, Lyu L, et al. Construction and Building Materials, 2022, 318, 126032.
54 Guo F C, Zhang J P, Pei J Z, et al. Journal of Molecular Modeling, 2019, 25, 12.
55 Liu Q, Fang R Y, Wu J T, et al. Construction and Building Materials, 2023, 392, 13209.
56 Zhao K C, Wang Y H, Yang Z. Journal of Highway and Transportation Research and Development, 2021, 38(5), 10 (in Chinese).
赵可成, 王予红, 杨震. 公路交通科技, 2021, 38(5), 10.
57 Li Z. Study on the colloidal chemical characteristics of bottom oil recycling on catalytic thermal-cracking of residue under hydrogen atmosphere. Master’s Thesis, China University of Petroleum (East China), China, 2018 (in Chinese).
李正. 渣油临氢催化热裂化尾油循环体系胶体化学特性研究. 硕士学位论文, 中国石油大学(华东), 2018.
58 Branthaver J F, Petersen J C, Robertson R E, et al. Chromatography, 1993.
59 Altgelt K H. Journal of Applied Polymer Science, 2010, 9(10), 3389.
60 Tian R Y, Luo H Y, Huang X M, et al. Materials (Basel), 2022, 15(5), 1889.
61 O’Donnell G, Snider L T, Rietz E G. Analytical Chemistry, 1951, 23(6), 894.
62 Research Institute of Highway Ministry of Transport. Standard test methods of bitumen and bituminous mixtures for highway engineering: JTG E20-2011, China Communication Press, China, 2011 (in Chinese).
交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程: JTG E20-2011, 人民交通出版社, 2011.
63 Wang T, Wang J Y, Hou X D, et al. Road Materials and Pavement Design, 2019, 22(3), 539.
64 ASTM D 4124. Standard test method for separation of asphalt into four fractions, ASTM International, USA, 2009, pp.6.
65 ASTM D 3279. Standard test method for n-heptane insoluble, ASTM International, USA, 2012, pp.112.
66 ASTM D 6560. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products, ASTM International, USA, 2012, pp.63.
67 ASTM D. Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method, ASTM International, USA, 2007, pp.56.
68 Wang S S, Zheng H Y, Zhu J G, et al. China Journal of Highway and Transport, 2022, 35(10), 114 (in Chinese).
王珊珊, 郑华宇, 朱建国, 等. 中国公路学报, 2022, 35(10), 114.
69 Liu X, Wu S P, Liu G, et al. Materials, 2015, 8(8), 5238.
70 Yang C, Xie J, Wu S P, et al. Construction and Building Materials, 2020, 235, 117437.
71 Cong P L, Luo W H, Xu P J, et al. Construction and Building Materials, 2015, 91, 225.
72 Boysen R B, Schabron J F. Energy & Fuels, 2013, 27(8), 4654.
73 Speight, James G. Applied Spectroscopy Reviews. 1972, 5(1), 211.
74 Mullins O C. Structures and Dynamics of Asphaltenes, Springer, Germany 1998, pp.21.
75 Mullins O C, Sabbah H, Eyssautier J, et al. Energy & Fuels, 2012, 26(7), 3986.
76 Schuler B, Meyer G, Pena D, et al. Journal of the American Chemical Society, 2015, 137(31), 9870.
77 Taylor S E. Fuel, 1998, 77(8), 821.
78 Dong X, Gou J B, Wang L. Journal of Highway and Transportation Research and Development (Application Technical Edition), 2013, 9(11), 120 (in Chinese).
董鑫, 苟静波, 王龙. 公路交通科技(应用技术版), 2013, 9(11), 120.
79 Oyekunle L O. Petroleum Science and Technology, 2007, 25(11), 1401.
80 Michalica P, Kazatchkov I B, Stastna J, et al. Fuel, 2008, 87(15-16), 3247.
81 Mortazavi M, Moulthrop J S. The SHRP materials reference library, National Research Council, USA, 1993.
82 Yang C, Wang J, Xie J, et al. Road Materials and Pavement Design, 2020, 23(4), 942.
83 Liang W J, Que G H, Chen Y Z. Acat Petrolei Sinica (Petroleum Processing Section), 1991(4), 1 (in Chinese).
梁文杰, 阙国和, 陈月珠. 石油学报(石油加工), 1991(4), 1.
84 Chen H X, He M S, Ji X H, et al. Journal of Chang’an University (Natural Science Edition), 2014, 34(3), 1 (in Chinese).
陈华鑫, 贺孟霜, 纪鑫和, 等. 长安大学学报(自然科学版), 2014, 34(3), 1.
85 Hiroshi I, Hiroshi K. Sekiyu Gakkaishi, 2009, 5(8), 568.
86 Haruya Tanaka. Asphalt (Japan), 1999, 41, 198.
87 Que G H, Liu C G, Chen Y Z, et al. China Petroleum Processing Petrochemical Technology, 1987(6), 32 (in Chinese).
阙国和, 刘晨光, 陈月珠, 等. 石油炼制与化工. 1987(6), 32.
88 Cai T. Test analysis of components and viscosity of asphalt materials. Master’s Thesis, Chang’an University, China, 2005 (in Chinese).
蔡婷. 沥青材料的组分与粘度试验分析. 硕士学位论文, 长安大学, 2005.
89 Wang L L, Chrng G L, Wang H N, et al. New Chemical Materials, 2022, 50(10), 270 (in Chinese).
王立路, 成高立, 汪海年, 等. 化工新型材料, 2022, 50(10), 270.
90 Liu C, Fan S Y, Zhang J F, et al. Contemporary Chemical Industry, 2023, 52(1), 62 (in Chinese).
刘成, 范思远, 张建峰, 等. 当代化工, 2023, 52(1), 62.
91 Wang Z H, Wu X C, Li H L, et al. Petroleum Asphalt, 2020, 34(3), 26 (in Chinese).
王泽华, 武新成, 李宏亮, 等. 石油沥青, 2020, 34(3), 26.
92 Polacco G, Kí P, Filippi S, et al. European Polymer Journal, 2008, 44(11), 3512.
93 Zhang E H, Shan L Y, Qi X F, et al. Construction and Building Materials, 2022, 343, 128001.
94 Ghasemirad A, Bala N, Hashemian L. Molecules, 2020, 25,15.
95 Sultana S, Bhasin A. Construction & Building Materials, 2014, 72(dec. 15), 293.
96 Mansourkhaki A, Ameri M, Daryaee D. Construction and Building Materials, 2019, 203, 83.
97 Mansourkhaki A, Ameri M, Habibpour M, et al. Journal of Materials in Civil Engineering, 2020, 32(4), 04020026.
98 Ye Z Y, Fan X Z, Long J. et al. Acat Petrolei Sinica (Petroleum Processing Section) , 2022, 38(2), 367 (in Chinese).
叶正扬, 樊小哲, 龙军, 等. 石油学报(石油加工), 2022, 38(2), 367.
99 DONG Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture. Ph. D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
董雨明. 硬质沥青及其混合料流变特性与低温性能研究. 博士学位论文, 哈尔滨工业大学, 2015.
100 Isacsson U, Zeng H. Construction and Building Materials, 1997, 11(2), 83.
101 Wang Y R, Xiong Y C, Ma X P. et al. Construction and Building Materials, 2022, 328, 127107.
102 Li L, Wang T. Highway, 2023, 68(4), 16 (in Chinese).
李磊, 王涛. 公路, 2023, 68(4), 16.
103 Liu S J, Zhou S B, Peng A H. Journal of Applied Polymer Science, 2020, 137(34), 48984.
104 Wang C, Xie T T, Cao W. Materials and Structures, 2019, 52(5), 98.
105 Salehfard R, Behbahani H, Dalmazzo D, et al. Construction and Building Materials, 2021, 281, 122563.
106 Ye Q S, Yang Z Y, Lv S T, Journal of Cleaner Production, 2023, 419. 138238
107 Xing C, Tan Y Q, Zhang K, et al. China Journal of Highway and Transport, 2020, 33(10), 76.
邢超, 谭忆秋, 张凯, 等. 中国公路学报, 2020, 33(10), 76.
108 Ismael M Q. Innovative Infrastructure Solutions, 2022, 7(2), 136.
109 Li F J, Wang Y H, Zhao K C. Construction and Building Materials, 2022, 329, 127173.
110 Sakib N, Hajj R, Hure R, et al. Journal of Materials in Civil Engineering, 2020, 32(6), 0402014.
111 Haghshenas H F, Rea R, Reinke G, et al. Construction and Building Materials, 2022, 318, 126161.
112 Baditha A K, Muppireddy A R, Kusam S R. Journal of Materials in Civil Engineering, 2022, 34(12), 04022353.
113 Wu K, Zhu K, Kang C, Wu B, et al. Materials & Design, 2016, 103, 223.
114 Bonati A, Merusi F, Polacco G, et al. Construction and Building Materials, 2012, 37, 660.
115 Zhang C C, Xu T, Shi H Q, et al. Journal of Thermal Analysis and Calorimetry, 2015, 122(1), 241.
116 Wang Y H. Research on pyrolysis and combustioncharacteristics and substance transition law of base asphalt. Master Thesis, China Jiliang University, China, 2020 (in Chinese).
王云鹤. 基质沥青热解燃烧特性与物质变迁规律研究. 硕士学位论文, 中国计量大学, 2020.
117 Wilkie C A. Materials Today, 2009, 12(4), 46.
118 Kuppe G J M, Mehta A, Moore R G, et al. Journal of Canadian Petroleum Technology, 2008, 47(1), 38.
119 Firoozifar S H, Foroutan S, Foroutan S. Chemical Engineering Research & Design, 2011, 89(10A), 2044.
120 Xia W J. Combustion behavior of bituminous pavement under tunnel fire and synergistic inhibition mechanism of composite flame retardant. Ph. D. Thesis, Nanjing Forestry Universty, China, 2020 (in Chinese).
夏文静. 隧道火灾下沥青路面燃烧行为及复合阻燃剂协同抑制机理. 博士学位论文, 南京林业大学, 2020.
121 Xu T, Huang X M. Fuel, 2010, 89(9), 2185.
122 Zhu K. Study on calcium-based flame retardant nanocomposites base on multi-components combustion characteristics of asphalt. Ph. D. Thesis, Zhejiang University, China, 2015 (in Chinese).
朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究. 博士学位论文, 浙江大学, 2015.
123 Zhu K, Qin X W, Wang Y H, et al. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105370.
124 Zhu K, Wang Y H, Tang D Q, et al. Materials, 2019, 12(5), 801.
125 Zhao J W, Huang X M, Xu T. Construction and Building Materials, 2015, 80, 125.
126 Shi H Q. Study on flame retardant and smoke suppression technology of thermal decomposition of asphalt pavement under large urban tunnel fire. Master Thesis, Nanjing Forestry Universty, China, 2016 (in Chinese).
石华泉. 城市大型隧道沥青路面热分解全过程阻燃抑烟技术研究. 硕士学位论文, 南京林业大学, 2016.
127 Alvarez E, Marroquin G, Trejo F, et al. Fuel, 2011, 90(12), 3602.
128 Shi H Q, Xu T, Jiang R L. Fuel, 2017, 192, 18.
129 Yu X, Burnham N A, Mallick R B, et al. Fuel, 2013, 113, 443.
130 Chang R, Wang H X. China Sciencepaper, 2020, 15(4), 420 (in Chinese).
常嵘, 王宏鑫. 中国科技论文, 2020, 15(4), 420.
131 Eberhardsteiner L, Fuessl J, Hofko B, et al. Materials and Structures, 2015, 48(10), 3099.
132 Han K C. Identification of asphalt aging gene and prediction research of aging law based on omics technology. Master Thesis, Shandong Jianzhu University, China, 2019 (in Chinese).
韩科超. 基于组学技术的沥青老化基因鉴定及老化规律预测研究. 硕士学位论文, 山东建筑大学, 2019.
133 Qian G P, Zeng S H, Leiva-Villacorta F. Journal of China and Foreign Highway, 2016, 36(5), 270 (in Chinese).
钱国平, 曾淑慧, Leiva-Villacorta F. 中外公路, 2016, 36(5), 270.
134 Mikhailenko P, Baaj H. Energy & Fuels, 2019, 33(4), 2633.
135 Fernández-Gómez W D, Rondón Quintana H A, Daza C E, et al. Fuel, 2014, 115, 321.
136 Hu D L, Gu X Y, Sun L J, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 141 (in Chinese).
胡栋梁, 顾兴宇, 孙丽君, 等. 交通运输工程学报, 2023, 23(2), 141.
137 Liu J X, Chen M Z, Yu W H, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(1), 21 (in Chinese).
柳景祥, 陈美祝, 喻文海, 等. 武汉理工大学学报(交通科学与工程版), 2018, 42(1), 21.
138 Zhao Z P, Li Y, Li M Y, et al. Petroleum Refinery Engineering, 2022, 52(1), 59 (in Chinese).
赵泽鹏, 李源, 李梦园, 等. 炼油技术与工程, 2022, 52(1), 59.
139 Nie Y H, Zhang Y L, Yu J Y, et al. Applied Mechanics and Materials. 2012, 204-208, 1659.
140 Kuang D L, Liu W C, Xiao Y, et al. Construction and Building Materials, 2019, 223, 986.
141 Haghshenas H F, Rea R, Reinke G, et al. Journal of Materials in Civil Engineering, 2020, 32, 04019327.
142 Zhang J Z, Sun H, Jiang H G, et al. Construction and Building Materials, 2019, 215, 660.
143 Ingrassia LP, Lu X, Ferrotti G, et al. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2), 192.
144 El-Shorbagy A M, El-Badawy S M, Gabr A R. Construction and Building Materials, 2019, 220, 228.
145 Guduru G, Kumara C, Gottumukkala B, et al. Journal of Transportation Engineering, Part B, Pavements. 2021, 147(2), 04021006.
146 Abdelaziz A, Masad E, Epps Martin A, et al. Journal of Materials in Civil Engineering, 2021, 33(10), 04021287.
147 Asadi B, Tabatabaee N, Hajj R. Construction and Building Materials, 2021, 300, 123983.
148 Sotoodeh-Nia Z, Manke N, Williams RC, et al. Road Materials and Pavement Design, 2021, 22(5), 1060.
149 Asli H, Ahmadinia E, Zargar M, et al. Construction and Building Materials, 2012, 37, 398.
150 Li H B, Zhang F, Feng Z X, et al. Construction and Building Materials, 2021, 276, 122138.
151 Oldham D J, Hung A, Parast MM, et al. Construction and Building Materials, 2018, 159, 37.
152 Oldham D J, Rajib A I, Onochie A, et al. Construction and Building Materials, 2019, 208, 543.
153 Zeng W, Wang J, Qin Y C, et al. Journal of Jiangsu University (Natural Science Edition), 2022, 43(1), 119 (in Chinese).
曾蔚, 王杰, 秦永春, 等. 江苏大学学报(自然科学版), 2022, 43(1), 119.
154 Zhou T, Cao L P, Fini E H, et al. Construction and Building Materials, 2020, 249, 118748.
155 Xu G J, Wang H, Sun W. Construction and Building Materials, 2018, 158, 1046.
156 Hu D L, Gu X Y, Dong Q, et al. Journal of Cleaner Production, 2021, 329, 129711.
157 Gong F Y. Digitalized classification of coarse aggregate in asphalt mixture and its application. Ph. D. Thesis, Chang’an University, China, 2019 (in Chinese).
龚芳媛. 沥青混合料中粗集料数字化分类及其应用研究. 博士学位论文, 长安大学, 2019.
[1] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[2] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[3] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[4] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[5] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[6] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[7] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[8] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[9] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[10] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[11] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[12] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[13] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[14] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[15] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed