Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010158-10    https://doi.org/10.11896/cldb.24010158
  无机非金属及其复合材料 |
光热发电储能熔盐研究进展
李广, 付一川, 余海存, 杨鹏辉, 魏莹, 喇培清, 顾玉芬*
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Research Progress in Thermal Energy Storage Molten Salts for Concentrated Solar Power Systems
LI Guang, FU Yichuan, YU Haicun, YANG Penghui, WEI Ying, LA Peiqing, GU Yufen*
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 22272KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光热发电是极具发展前景的可再生能源技术,不仅可实现电力能源的梯次利用,还能与风电、光电等互补运行。基于国内外对光热发电技术的研究,本文综述了光热发电用储能熔盐的研究进展。熔盐是光热发电热能存储系统中理想的传储能介质,具有高热容量、高导热性和低黏度等优异的热物理性质。熔盐储能具有储能容量大、储存周期长和成本低等优点,在光热发电、熔盐反应堆、供暖和余热回收等领域广泛应用。本文首先介绍了光热发电技术的优势和发展,接着归纳总结了光热发电用储能熔盐的主要特性和发展,并对新开发配比的熔盐以及熔盐纳米流体热物理性质进行了阐述,最后总结和展望了下一代光热发电储能熔盐的发展。期望了解光热发电储能熔盐的技术发展,为下一代热能传储系统的设计、制造和运行维护提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李广
付一川
余海存
杨鹏辉
魏莹
喇培清
顾玉芬
关键词:  光热发电  熔盐  储能熔盐  熔盐腐蚀    
Abstract: Concentrated solar power is a highly promising renewable energy technology that enables cascaded utilization of electricity and can complement other renewable energy sources such as wind and photovoltaic power. Based on domestic and international research on concentrated solar power technology, this review summarizes the research progress in thermal energy storage molten salts for concentrated solar power applications. Molten salt is an ideal medium for energy transfer and storage in thermal energy storage systems for concentrated solar power due to its excellent thermophysical properties including high heat capacity, high thermal conductivity, and low viscosity. Molten salt energy storage offers advantages such as large storage capacity, long storage cycles, and low costs, making it widely applicable in areas such as concentrated solar power, molten salt reactors, heating, and waste heat recovery. This paper first introduces the advantages and development of concentrated solar power technology, followed by a summary of the main characteristics and advancements in thermal energy storage molten salts. It also discusses newly developed salt compositions and the thermophysical properties of molten salt nanofluids. Finally, the paper summarizes and looks forward to the development of next-generation thermal energy storage molten salts is presented. The aim is to provide insights into the technological advancements in thermal energy storage molten salts for the design, manufacturing, and operation maintenance of next-generation energy transfer and storage systems.
Key words:  concentrated solar power    molten salt    molten salt energy storage    molten salt corrosion
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  O611.4  
基金资助: 甘肃省科技重大专项(23ZDGA010;22ZD6GA008);甘肃省自然科学基金(21JR7RA233);甘肃省高等学校产业支撑计划(GCJ2022-38);国家自然科学基金(51961022)
通讯作者:  *顾玉芬,兰州理工大学材料科学与工程学院教授、硕士研究生导师。目前主要从事无机材料的制备研究。guyf@lut.edu.cn   
作者简介:  李广,兰州理工大学材料科学与工程学院副研究员、硕士研究生导师。目前主要从事材料服役可靠性的研究工作。
引用本文:    
李广, 付一川, 余海存, 杨鹏辉, 魏莹, 喇培清, 顾玉芬. 光热发电储能熔盐研究进展[J]. 材料导报, 2025, 39(4): 24010158-10.
LI Guang, FU Yichuan, YU Haicun, YANG Penghui, WEI Ying, LA Peiqing, GU Yufen. Research Progress in Thermal Energy Storage Molten Salts for Concentrated Solar Power Systems. Materials Reports, 2025, 39(4): 24010158-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010158  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010158
1 Pitz-Paal R, Krüger J, Hinsch J, et al. Solar Compass, 2022, 3-4, 100029.
2 Song S, Lin H, Sherman P, et al. iScience, 2022, 25(6), 104399.
3 Kumar C M S, Singh S, Gupta M K, et al. Sustainable Energy Technologies and Assessments, 2023, 55, 102905.
4 Li F G, Trutnevyte E. Applied Energy, 2017, 189, 89.
5 Li M, Virguez E, Shan R, et al. Applied Energy, 2022, 306, 117996.
6 He W Y, Yan Q Y. Materials Reports, 2015, 29(S1), 128 (in Chinese).
贺万玉, 闫全英. 材料导报, 2015, 29(S1), 128.
7 Cabeza L F, Sole C, Castell A, et al. Proceedings of the IEEE, 2011, 100(2), 525.
8 Poole L. Concentrating solar power: Energy from mirrors, United States, 2001, pp. 778882.
9 Gauché P, Rudman J, Mabaso M, et al. Solar Energy, 2017, 152, 106.
10 Herrmann U, Kelly B, Price H. Energy, 2004, 29(5-6), 883.
11 Papaelias M, García Márquez F P, Ramirez I S. Concentrated solar power: Present and future, UK, 2018, pp. 51.
12 Mehos M, Turchi C, Vidal J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2017, pp. 1338899.
13 Zhang Y W, Guo X, Wang L F, et al. Renewable Energy, 2018, 36(10), 1449 (in Chinese).
张远巍, 郭枭, 汪凌飞, 等. 可再生能源, 2018, 36(10), 1449.
14 Perez M, Perez R. Solar Energy Advances, 2022, 2, 100014.
15 Sun K, Zhao S Q, Li Z W. Journal of North China Electric Power University (Natural Science Edition), 2024, 51(2), 70 (in Chinese).
孙科, 赵书强, 李志伟. 华北电力大学学报(自然科学版), 2024, 51(2), 70.
16 Li W J. Theory, method and system of solar energy utilization with photovoltaics, solar thermal, and thermochemical complementarity. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), China, 2018 (in Chinese).
李文甲. 光伏—光热—热化学互补的太阳能利用理论、方法与系统. 博士学位论文, 中国科学院大学(中国科学院工程热物理研究所), 2018.
17 Xiong W, Ma Z C, Zhang X Y, et al. Journal of Solar Energy, 2022, 43(7), 39 (in Chinese).
熊伟, 马志程, 张晓英, 等. 太阳能学报, 2022, 43(7), 39.
18 Turchi C S, Boyd M, Kesseli D, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2019. pp. 1513197.
19 Liu M, Steven Tay N H, Bell S, et al. Renewable and Sustainable Energy Reviews, 2016, 53, 1411.
20 Aneke M, Wang M. Applied Energy, 2016, 179, 350.
21 Vignarooban K, Xu X, Arvay A, et al. Applied Energy, 2015, 146, 383.
22 Zhang J P, Zhou Qiang, Wang Dingmei, et al. Journal of Integrated Smart Energy, 2023, 45(2), 44 (in Chinese).
张金平, 周强, 王定美, 等. 综合智慧能源, 2023, 45(2), 44.
23 Pelay U, Luo L, Fan Y, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 82.
24 Alva G, Lin Y, Fang G. Energy, 2018, 144, 341.
25 Baharoon D A, Rahman H A, Omar W Z W, et al. Renewable and Sustainable Energy Reviews, 2015, 41, 996.
26 Fernández A, Lasanta M, Pérez F. Oxidation of Metals, 2012, 78(5), 329.
27 Cao C Z, Zheng J T, Liu M G, et al. Renewable Energy, 2013, 31(12), 21 (in Chinese).
曹传钊, 郑建涛, 刘明义, 等. 可再生能源, 2013, 31(12), 21.
28 Burgaleta J I, Arias S, Ramirez D. SolarPACES, 2011, 20, 23.
29 Zhu H H, Wang K, He Y L. Energy, 2017, 140, 144.
30 Wang K, He Y L. Energy Conversion and Management, 2017, 135, 336.
31 Dunham M T, Iverson B D. Renewable and Sustainable Energy Reviews, 2014, 30, 758.
32 Ma Z, Turchi C S. In: the Supercritical CO2 Power Cycle Symposium Boulder, Colorado, United States, 2011, pp.1009673.
33 Desideri U, Campana P E. Applied Energy, 2014, 113, 422.
34 Carrillo A J, González-Aguilar J, Romero M, et al. Chemical Reviews, 2019, 119(7), 4777.
35 Lu Y, Peng G W, Wang Z P, et al. Materials Reports, 2011, 25(21), 38 (in Chinese).
路阳, 彭国伟, 王智平, 等. 材料导报, 2011, 25(21), 38.
36 Gil A, Medrano M, Martorell I, et al. Renewable and Sustainable Energy Reviews, 2010, 14(1), 31.
37 Medrano M, Gil A, Martorell I, et al. Renewable and Sustainable Energy Reviews, 2010, 14(1), 56.
38 Roper R, Harkema M, Sabharwall P, et al. Annals of Nuclear Energy, 2022, 169, 108924.
39 Kuravi S, Trahan J, Goswami D Y, et al. Progress in Energy and Combustion Science, 2013, 39(4), 285.
40 Kipouros G J, Sadoway D R. Journal of Light Metals, 2001, 1(2), 111.
41 Ding W, Shi H, Jianu A, et al. Solar Energy Materials and Solar Cells, 2019, 193, 298.
42 Gao Q, Lu Y, Yu Q, et al. Solar Energy Materials and Solar Cells, 2022, 245, 111851.
43 Fernández A G, Muñoz-Sánchez B, Nieto-Maestre J, et al. Renewable Energy, 2019, 130, 902.
44 Kondaiah P, Pitchumani R. Renewable Energy, 2023, 205, 956.
45 Kruizenga A M. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2012, pp.1051732.
46 Dunn R I, Hearps P J, Wright M N. Proceedings of the IEEE, 2011, 100(2), 504.
47 Bonk A, Braun M, Sötz V A, et al. Applied Energy, 2020, 262, 114535.
48 Fernández A, Cortes M, Fuentealba E, et al. Renewable Energy, 2015, 80, 177.
49 Sun H, Zhang P, Wang J Q. Corrosion Science and Protection Technology, 2017, 29(5), 567 (in Chinese).
孙华, 张鹏, 王建强. 腐蚀科学与防护技术, 2017, 29(5), 567.
50 Fernández A, Ushak S, Galleguillos H, et al. Applied Energy, 2014, 119, 131.
51 Fernández A G, Ushak S, Galleguillos H, et al. Solar Energy Materials and Solar Cells, 2015, 132, 172.
52 Coscia K, Nelle S, Elliott T, et al. Journal of Solar Energy Engineering, 2013, 135(3), 034506.
53 Wang T, Mantha D, Reddy R G. Solar Energy Materials and Solar Cells, 2012, 100, 162.
54 Mantha D, Wang T, Reddy R. Journal of Phase Equilibria and Diffusion, 2012, 33(2), 110.
55 Du B Q. Preparation and thermal properties study of nitrate molten salt energy storage materials. Master’s Thesis, University of Chinese Academy of Sciences (Institute of Salt Lakes, Chinese Academy of Sciences), China, 2017 (in Chinese).
杜宝强. 硝酸熔盐储能材料的制备及热物性研究. 硕士学位论文, 中国科学院大学(中国科学院青海盐湖研究所), 2017.
56 Peng Q, Ding J, Wei X, et al. Applied Energy, 2010, 87(9), 2812.
57 Sheng P, Xu L, Zhao G Y, et al. Energy Storage Science and Technology, 2021, 10(1), 170 (in Chinese).
盛鹏, 徐丽, 赵广耀, 等. 储能科学与技术, 2021, 10(1), 170.
58 Zhao C Y, Wu Z G. Solar Energy Materials and Solar Cells, 2011, 95(12), 3341.
59 Wu Y T, Li Y, Ren N, et al. Solar Energy Materials and Solar Cells, 2018, 176, 181.
60 Zou L L, Chen X, Wu Y T, et al. Solar Energy Materials and Solar Cells, 2019, 190, 12.
61 Li J, Zhang Y, Zhao Y, et al. Solar Energy Materials and Solar Cells, 2021, 227, 111075.
62 Kwasi-Effah C C, Ighodaro O, Egware H O, et al. Results in Engineering, 2022, 16, 100721.
63 Bradshaw R W, Goods S H. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2001, pp.1545803.
64 Chen H, Wu Y T, Lu Y W, et al. Energy Storage Science and Technology, 2018, 7(1), 48 (in Chinese).
陈虎, 吴玉庭, 鹿院卫, 等. 储能科学与技术, 2018, 7(1), 48.
65 Masuda H, Ebata A, Teramae K. Netsu Bussei, 1993, 7(4), 227.
66 Wu Y Z, Wang M, Li J L, et al. Materials Engineering, 2020, 48(1), 10 (in Chinese).
武延泽, 王敏, 李锦丽, 等. 材料工程, 2020, 48(1), 10.
67 Glatzmaier G C, Pradhan S, Kang J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2010, pp. 991561.
68 Choi S U, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles, United States, 1995, pp. 196525.
69 Jo B, Banerjee D. Acta Materialia, 2014, 75, 80.
70 Li Z. Research on thermal property enhancement of molten salt-based nanofluids. Ph. D. Thesis, North China Electric Power University (Beijing), China, 2021 (in Chinese).
李昭. 熔盐基纳米流体热物性强化研究. 博士学位论文, 华北电力大学(北京), 2021.
71 Zhang Y. Preparation and thermal storage mechanism study of nitrate-based nanocomposite materials. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2021 (in Chinese).
张月. 硝酸盐基纳米复合材料的制备及储热机理研究. 博士学位论文, 中国科学院大学, 2021.
72 Shin D, Banerjee D. International Journal of Heat and Mass Transfer, 2011, 54(5-6), 1064.
73 Hamdy E, Olovsjö J N, Geers C. Solar Energy, 2021, 224, 1210.
74 Meng F X. Simulation study on the thermal properties of carbonate molten salt thermal storage materials. Master’s Thesis, North China Electric Power University, China, 2021 (in Chinese).
孟凡星. 碳酸盐熔盐储热材料热物性模拟研究. 硕士学位论文, 华北电力大学, 2021.
75 He W Y. Experimental study on the thermal properties and corrosiveness of mixed chloride molten salt. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2016 (in Chinese).
贺万玉. 混合氯化熔盐的热物性及腐蚀性实验研究. 硕士学位论文, 北京建筑大学, 2016.
76 Holcomb D, Flanagan G, Patton B, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2011, pp. 1018987.
77 Maksoud L, Bauer T. In: 10th International Conference on Molten Salt Chemistry and Technology. Shenyang, China, 2015, pp. 96675.
78 Murphy C, Sun Y, Cole W J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2019, pp.1491726.
79 Ding W, Bonk A, Bauer T. AIP Publishing LLC, 2019, 2126(1), 200014.
80 Ding W, Bonk A, Bauer T. Frontiers of Chemical Science and Engineering, 2018, 12(3), 564.
81 Patel N S, Pavlík V, Boa M. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1), 83.
82 Ding W, Shi H, Xiu Y, et al. Solar Energy Materials and Solar Cells, 2018, 184, 22.
83 Ding W, Bauer T. Engineering, 2021, 7(3), 334.
84 Vidal J C, Klammer N. AIP Publishing LLC, 2019, 2126(1), 080006.
85 Villada C, Ding W, Bonk A, et al. Solar Energy Materials and Solar Cells, 2021, 232, 111344.
86 Villada Vargas C, Ding W, Bonk A, et al. Frontiers in Energy Research, 2022, 10, 809663.
87 Li P, Molina E, Wang K, et al. Journal of Solar Energy Engineering, 2016, 138(5), 054501.
88 Xu X, Dehghani G, Ning J, et al. Solar Energy, 2018, 162, 431.
89 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Energy Conversion and Management, 2018, 167, 156.
90 Mayes R T, Kurley Iii J M, Halstenberg P W, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2018, pp. 1506795.
91 Prieto C, Fereres S, Ruiz-Cabañas F J, et al. Renewable Energy, 2020, 151, 528.
92 Ming S B D. Preparation and physical property analysis of high-temperature mixed molten salts with application temperature above 600 ℃. Master’s Thesis, Beijing University of Technology, China, 2021 (in Chinese).
明苏布道. 应用温度600 ℃以上高温混合熔盐的配制与物性分析. 硕士学位论文, 北京工业大学, 2021.
93 Gomez-Vidal J C, Noel J, Weber J. Solar Energy Materials and Solar Cells, 2016, 157, 517.
94 Mohan G, Venkataraman M B, Coventry J. Renewable and Sustainable Energy Reviews, 2019, 107, 319.
95 Volkova L. Izvest Sibirsk Oldel Akad Nauk SSSR, 1958, 7, 33.
96 Wu Y T, Ren N, Wang T, et al. Solar Energy, 2011, 85(9), 1957.
97 Ren N, Wu Y T, Wang T, et al. Journal of Thermal Analysis and Calorimetry, 2011, 104(3), 1201.
98 Chen C, Tran T, Olivares R, et al. Journal of Solar Energy Engineering, 2014, 136(3), 031017.
99 Sang L, Cai M, Ren N, et al. Solar Energy Materials and Solar Cells, 2014, 124, 61.
100 Sang L, Cai M, Zhao Y, et al. Solar Energy Materials and Solar Cells, 2015, 140, 167.
101 Olivares R I, Chen C, Wright S. Journal of Solar Energy Engineering, 2012, 134(4), 041002.
102 Liu T, Dong J S, Xie G, et al. Acta Metallurgica Sinica, 2015, 51(9), 1059 (in Chinese).
刘涛, 董加胜, 谢光, 等. 金属学报, 2015, 51(9), 1059.
103 Sona C, Gajbhiye B, Hule P, et al. Corrosion Engineering, Science and Technology, 2014, 49(4), 287.
104 Wang Y, Zhang S, Ji X, et al. International Journal of Electrochemical Science, 2018, 13(5), 4891.
105 Forsberg C W, Peterson P F, Zhao H. Journal of Solar Energy Engineering, 2007, 129(2), 141.
106 Lantelme F, Groult H. In: Molten Salts Chemistry: from Lab to Applications, Elsevier, UK, 2013, pp. 187.
107 Li Y, Xu X, Wang X, et al. Solar Energy, 2017, 152, 57.
108 Tian Y, Zhao C Y. Applied Energy, 2013, 104, 538.
109 Skrbek K, Bartněk V, Sedmidubský D. Renewable and Sustainable Energy Reviews, 2022, 164, 112548.
110 Ibrahim A, Peng H, Riaz A, et al. Solar Energy Materials and Solar Cells, 2021, 219, 110768.
111 Ding W, Bonk A, Gussone J, et al. Journal of Energy Storage, 2018, 15, 408.
112 Lambrecht M, De Miguel M T, Lasanta M I, et al. Solar Energy Materials and Solar Cells, 2022, 237, 111557.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[3] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[4] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[5] 王碧侠, 于翔, 李建新, 王子钰, 马红周. 熔盐电解法和固体粉末法在纯镍表面渗硼的对比研究[J]. 材料导报, 2022, 36(18): 21050282-5.
[6] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[7] 何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
[8] 王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
[9] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[10] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[11] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[12] 李亮星, 王涛胜, 黄茜琳, 黄金堤. 熔盐电解法制备铝钪中间合金研究进展[J]. 材料导报, 2018, 32(21): 3768-3773.
[13] 阚小清,丁 军,余 超,邓承继,祝洪喜,樊国栋,冷光辉. 仿生制备多孔ZrC/C复合陶瓷材料[J]. 《材料导报》期刊社, 2018, 32(10): 1602-1605.
[14] 谭操, 段红娟, 王军凯, 张海军, 刘江昊. 熔盐镁热还原法合成ZrB2超细粉体*[J]. 《材料导报》期刊社, 2017, 31(8): 109-112.
[15] 王旭,廖春发,焦芸芬,汤浩. 氟盐-氧化物体系电解制备Al-Cu-Y合金的电极还原过程研究*[J]. 材料导报编辑部, 2017, 31(22): 50-54.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed