Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 109-112    https://doi.org/10.11896/j.issn.1005-023X.2017.08.022
  材料研究 |
熔盐镁热还原法合成ZrB2超细粉体*
谭操, 段红娟, 王军凯, 张海军, 刘江昊
武汉科技大学材料与冶金学院,省部共建耐火材料与冶金国家重点实验室, 武汉 430081
Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction
TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao
The State Key Laboratory of Refractories and Metallurgy, College of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 1512KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了降低ZrB2粉体的合成温度,并在此基础上合成粒径细小、纯度高的ZrB2粉体,以ZrO2及B4C为原料,以Mg粉为还原剂,以NaCl-KCl为熔盐介质,研究熔盐镁热还原法低温合成ZrB2超细粉体的工艺。探讨了反应温度、B/Zr物质的量比及Mg粉用量对合成ZrB2超细粉体的影响,并对粉体的物相组成及显微结构进行了表征。结果表明合成ZrB2的起始温度为1 173 K, 最佳合成温度为1 473 K。合成纯相的ZrB2粉体最佳工艺条件为:B/Zr物质的量比为2.2,Mg过量50%(质量分数),1 473 K反应3 h。所合成ZrB2粉体的晶粒尺寸为30~300 nm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭操
段红娟
王军凯
张海军
刘江昊
关键词:  ZrB2  超细粉体  熔盐  镁热还原    
Abstract: Phase pure ZrB2 ultrafine powders were prepared via molten-salt-mediated magnesiothermic reduction in NaCl-KCl salt-medium using zirconium dioxide and boron carbide as raw materials, and magnesium powders as reducing agent. The influences of firing temperature, molar ratio of B/Zr and dosage of Mg powders on the synthesis of ZrB2 were discussed, respectively. In addition, the phase composition and microstructure of the as-prepared ZrB2 powders were characterized. The results showed that ZrB2 could be formed at a temperature as low as 1 173 K, and the optimum synthesis temperature was 1 473 K. ZrB2 ultrafine powders with a crystalline size range of 30-300 nm can be synthesized under the condition of 1 473 K/3 h reaction, B/Zr molar ratio of 2.2, and excessive Mg amount of 50 wt%.
Key words:  ZrB2    ultrafine powder    molten salt    magnesiothermic reduction
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TB35  
基金资助: 973计划前期研究专项(2014CB660802);国家自然科学基金面上项目(51272188);湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602)
通讯作者:  张海军:男,1970年生,博士,教授,主要研究方向为高技术陶瓷及耐火材料 Tel:027-68862829 E-mail:zhanghaijun@wust.edu.cn   
作者简介:  谭操:男,1991年生,硕士研究生,研究方向为高技术陶瓷及耐火材料 E-mail:575931329@qq.com
引用本文:    
谭操, 段红娟, 王军凯, 张海军, 刘江昊. 熔盐镁热还原法合成ZrB2超细粉体*[J]. 《材料导报》期刊社, 2017, 31(8): 109-112.
TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction. Materials Reports, 2017, 31(8): 109-112.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.022  或          https://www.mater-rep.com/CN/Y2017/V31/I8/109
1 Zhang S, Khangkhamano M, Zhang H, et al. Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction[J]. J Am Chem Soc,2014,97(6):1686.
2 Wang Xiaoling, Wang Zhoufu, Wang Xitang, et al. Synthesis of TiB2 nanopowder by magnesiothermic reduction in molten salt[J]. J Chin Ceram Soc,2014,42(6):709(in Chinese).
王晓玲, 王周福, 王玺堂, 等. 熔盐中镁热还原合成二硼化钛纳米粉体[J]. 硅酸盐学报,2014,42(6):709.
3 Wang Junkai, Du Shuang, et al. Boro/carbothermal reduction preparation and oxidation resistance of ZrB2-SiC composite powders[J]. J Chin Ceram Soc,2015,43(9):1197(in Chinese).
王军凯, 杜爽, 等. 硼热/碳热还原反应合成 ZrB2-SiC 复合粉体及其抗氧化性能[J]. 硅酸盐学报,2015,43(9):1197.
4 Karasev A I. Preparation of technical zirconium diboride by the carbothermic reduction of mixtures of zirconium and boron oxides[J]. Sov Powder Metall Met Ceram,1973,12(11):926.
5 Radev D D, Klissurski D. Mechanochemical synthesis and SHS of diborides of titanium and zirconium[J]. J Mater Synth Process,2001,9(3):131.
6 Yan Y, Huang Z, Dong S, et al. New route to synthesize ultra-fine zirconium diboride powders using inorganic-organic hybrid precursors[J]. J Am Chem Soc,2006,89(11):3585.
7 Ran S, Sun H F, Wei Y N, et al. Low-temperature synthesis of nanocrystalline NbB2 powders by borothermal reduction in molten salt[J]. J Am Chem Soc,2014,97(11):3384.
8 Huang Z, et al. Preparation of CaZrO3 powders by a microwave-assisted molten salt method[J]. J Ceram Soc Jpn,2016,124(5):593.
9 Ding J, Deng C, Yuan W, et al. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes[J]. Ceram Int,2014,40(3):4001.
10 Ye J, Zhang S, Lee W E. Novel low temperature synthesis and cha-racterisation of hollow silicon carbide spheres[J]. Microp Mesop Mater,2012,152(4):25.
11 Zheng M T, Liu Y L,Wang P,et al. Synthesis and formation mecha-nism of cubic boron nitride nanorods in lithium bromide molten salt[J]. Mater Lett,2013,91(15):206.
12 Shi Haoliang, Xiao Hanning, Gao Pengzhao,et al.Preparation of ultra-fine ZrB2/SiC composite ceramic powders by carbothermal reduction[J]. Mater Mech Eng,2011,35(9):93(in Chinese).
施浩良, 肖汉宁, 高朋召, 等. 碳热还原法制备超细ZrB2/SiC复合陶瓷粉[J]. 机械工程材料,2011,35(9):93.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[3] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[4] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[5] 王碧侠, 于翔, 李建新, 王子钰, 马红周. 熔盐电解法和固体粉末法在纯镍表面渗硼的对比研究[J]. 材料导报, 2022, 36(18): 21050282-5.
[6] 王世界, 尹艺程, 邱鑫, 康国卫, 刘新红, 贾全利, 张少伟. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 20100045-8.
[7] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[8] 马殿普, 普友福, 陈高芳, 覃德清, 张家涛. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(Z1): 151-155.
[9] 郭启龙, 王晓庆, 王璟, 裴军军, 李俊国, 张联盟. 原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能[J]. 材料导报, 2021, 35(6): 6065-6070.
[10] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[11] 何康宇, 曹博凯, 莫岩, 陈永. 熔盐法制备LiNi0.8Co0.1Mn0.1O2单晶及其电化学性能[J]. 材料导报, 2021, 35(12): 12027-12031.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
[14] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[15] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed