Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23030006-7    https://doi.org/10.11896/cldb.23030006
  无机非金属及其复合材料 |
CTF增效剂提升混凝土抗冻性能研究
王习1,2, 张云升1,2, 张宇1,2,*, 乔宏霞1,2, 路承功1,2, Hakuzweyezu Theogene3,4, 刘志超1,2, 李忠慧1,2
1 兰州理工大学土木工程学院,兰州 730050
2 甘肃省先进土木工程材料工程研究中心,兰州 730050
3 中国科学院武汉岩土力学研究所,武汉 430071
4 中国科学院大学工程科学学院,北京100049
Study on Improving Frost Resistance of Concrete with CTF Synergist
WANG Xi1,2, ZHANG Yunsheng1,2, ZHANG Yu1,2,*, QIAO Hongxia1,2, LU Chenggong1,2, Hakuzweyezu Theogene3,4, LIU Zhichao1,2, LI Zhonghui1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China
3 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
4 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 11336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以3%质量浓度的NaCl溶液为介质,进行混凝土抗冻性试验,通过超声波波速损失率(Cn)、质量剥蚀量(MB)和溶液吸入率(WS)三种指标研究了CTF(Coal tar fuel)增效剂对混凝土抗冻性能的影响。同时,深入剖析了CTF增效剂对混凝土内部气孔结构的影响,并基于气孔分形模型,建立了分形维数(D)与超声波波速损失率(Cn)的关系。结果表明:CTF增效剂能有效提升混凝土的抗冻性能,且当掺量为0.7%时提升效果最为显著。与普通混凝土相比,降低10%的水泥用量并掺加0.7%的CTF增效剂时,冻融循环100次后,混凝土超声波波速损失率(Cn)较小,且质量剥蚀量(MB)降低了12.51%。此外,NaCl溶液吸入率(WS)降低了0.83%,内部直径规格小于100 μm的气孔个数增加了180%,大于100 μm的气孔个数减少了18.18%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王习
张云升
张宇
乔宏霞
路承功
Hakuzweyezu Theogene
刘志超
李忠慧
关键词:  混凝土  CTF增效剂  抗冻性能  孔结构  分形维数    
Abstract: In this work, NaCl solution with 3% mass concentration was used as the medium to test the frost resistance of concrete. The effect of CTF (coal tar fuel) on the frost resistance of concrete was studied by three indexes: ultrasonic wave velocity loss rate (Cn), mass denudation rate (MB) and solution suction rate (WS). At the same time, the effect of CTF on the pore structure in concrete was analyzed deeply. Based on the fractal model of the pore, the relationship between the fractal dimension (D) and the ultrasonic wave velocity loss rate (Cn) was established. The results show that CTF synergist can effectively improve the frost resistance of concrete and the improvement is most obvious when the content is 0.7%. Compared with ordinary concrete, when the cement content is reduced by 10% and the CTF synergist is added by 0.7%, the ultrasonic velocity loss rate (Cn) of concrete is smaller after 100 cycles of freezing and thawing and the mass denudation rate (MB) of concrete is reduced by 12.51%. In addition, when the NaCl solution absorption rate (WS) is decreased by 0.83%, the number of pores with internal diameter specifications less than 100 μm is increased by 180%, and the number of pores with internal diameter specifications larger than 100 μm is decreased by 18.18%.
Key words:  concrete    CTF synergist    frost resistance    pore structure    fractal dimension
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528.1  
基金资助: 国家自然科学基金(52208249;U21A20150);甘肃省青年科技基金(22JR5RA288);甘肃省绿色智慧公路关键技术研究及示范(21ZD3GA002);甘肃省高等学校产业支撑计划项目(2022CYZC-25);甘肃省教育厅研究生“创新之星”项目(2023CXZX-447)
通讯作者:  *张宇,通信作者,兰州理工大学土木工程学院讲师,红柳优青,硕士研究生导师,2021年东南大学材料科学与工程学院博士毕业,主要研究方向为机制砂混凝土、3D打印混凝土、固废资源化利用。参与编制国家/行业/团体标准3项;主持及参与国家、省部级项目6项;获国家授权发明专利4项,发表SCI/EI论文20余篇,第一作者ESI高被引论文2篇。zygwj88@yeah.net   
作者简介:  王习,2018年7月、2021年7月分别于延安大学和兰州理工大学获得工学学士学位和硕士学位。现为兰州理工大学土木工程学院博士研究生,在张云升教授的指导下进行研究。目前主要研究领域为混凝土耐久性。
引用本文:    
王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
WANG Xi, ZHANG Yunsheng, ZHANG Yu, QIAO Hongxia, LU Chenggong, Hakuzweyezu Theogene, LIU Zhichao, LI Zhonghui. Study on Improving Frost Resistance of Concrete with CTF Synergist. Materials Reports, 2024, 38(19): 23030006-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030006  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23030006
1 Zhang Z W, Zhang Z H, Wang X. Structures, 2022, 37, 947.
2 Zhang P, Shang J Q, Fan J J, et al. Construction and Building Materials, 2022, 316, 125822.
3 Zheng X Y, Wang Y R, Zhang S Q, et al. Construction and Building Materials, 2022, 330, 127254.
4 Wei X, Shen Y J, Li X T, et al. Construction and Building Materials, 2022, 327, 126986.
5 Xue C Z, Shen A Q, Qiao H X. Journal of South China University of Technology(Natural Sciece Edition), 2020, 48(3), 136(in Chinese).
薛翠真, 申爱琴, 乔宏霞. 华南理工大学学报(自然科学版), 2020, 48(3), 136.
6 Ma H Y, Sun W, Zhang J Y, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(6), 797(in Chinese).
麻海燕, 孙伟, 张建业, 等. 南京航空航天大学学报, 2010, 42(6), 797.
7 Chen J Z, Zhao T J, Zhang P, et al. China Concrete and Cement Products, 2020(1), 16(in Chinese).
陈际洲, 赵铁军, 张鹏, 等. 混凝土与水泥制品, 2020(1), 16.
8 Wu P C, Yang Q B, Xu J H, et al. Journal of Building Materials, 2020, 23(2), 317(in Chinese).
吴鹏程, 杨全兵, 徐俊辉, 等. 建筑材料学报, 2020, 23(2), 317.
9 Dong H L, Li H J, Yang Z Q, et al. Materials Reports, 2024, 38(2), 143(in Chinese).
董昊良, 李化建, 杨志强, 等. 材料导报, 2024, 38(2), 143.
10 Ge X L, Ke M Y, Liu W B, et al. Materials Reports, 2024, 38(12), 111(in Chinese).
戈雪良, 柯敏勇, 刘伟宝, 等. 材料导报, 2024, 38(12), 111.
11 Guan H, Long X, Ding S, et al. Materials Reports, 2024, 38(16), 149(in Chinese).
关虓, 龙行, 丁莎, 等. 材料导报, 2024, 38(16), 149.
12 Shen H S, He W H, Zhao C Z, et al. Mining Safety & Environmental Protection, 2021, 48(6), 65(in Chinese).
申海生, 和卫红, 赵春洲, 等. 矿业安全与环保, 2021, 48(6), 65.
13 Hao X F, Hao B Y, Xie Y S, et al. Mining Safety & Environmental Protection, 2019, 46(5), 60(in Chinese).
郝晓飞, 郝兵元, 谢益盛, 等. 矿业安全与环保, 2019, 46(5), 60.
14 Yang Q B. Journal of Building Materials, 2007(3), 266(in Chinese).
杨全兵. 建筑材料学报, 2007(3), 266.
15 Yang Q B. Journal of Building Materials, 2005(5), 495(in Chinese).
杨全兵. 建筑材料学报, 2005(5), 495.
16 Xiong O M. Science & Technology Information, 2018, 16(12), 70(in Chinese).
熊欧敏. 科技资讯, 2018, 16(12), 70.
17 Mayercsik N P, Vandamme M, Kurtis K E. Cement and Concrete Research, 2016, 88, 43.
18 Yang Y, Feng Q G, Zhu H Y, et al. Concrete, 2016(2), 134(in Chinese).
杨阳, 冯庆革, 朱惠英, 等. 混凝土, 2016(2), 134.
19 Wang S Y. Development Guide to Buiding Materials, 2014, 12(20), 60(in Chinese).
王树源. 建材发展导向, 2014, 12(20), 60.
20 Chen L, Guo H B, Lin N, et al. Fujian Construction Science & Technology, 2014(6), 39(in Chinese).
陈亮, 郭汉彬, 林娜, 等. 福建建设科技, 2014(6), 39.
21 Liu D S. Study on application performances of CTF synergist in the commercial concrete. Master's Thesis, Chongqing University, China, 2012(in Chinese).
刘道胜. CTF增效剂在商品混凝土中的应用性能研究. 硕士学位论文, 重庆大学, 2012.
22 Xu F. Effect of synergist CTF on properties of cement-based materials. Master's Thesis, Central South University, China, 2011(in Chinese).
许富. 增效剂CTF对水泥基材料性能的影响. 硕士学位论文, 中南大学, 2011.
23 JGJ53-92. Technical requirements and test method of gravel and for ordinary concrete, China Construction Industry Press, China, 1994(in Chinese).
JGJ53-92. 普通混凝土用碎石或卵石质量标准及检验方法, 中国建筑工业出版社, 1994.
24 JGJ52-2006. Standard for technical requirements and test method of sand and crushed stone for ordinary concrete, China Construction Industry Press, China, 2007(in Chinese).
JGJ52-2006. 普通混凝土用砂、石质量及检验方法标准, 中国建筑工业出版社, 2007.
25 JGJ63-2006. Standard of water for concrete, China Construction Industry Press, China, 2006(in Chinese).
JGJ63-2006. 混凝土用水标准, 中国建筑工业出版社, 2006.
26 Wu D M, Wang J M, Wang X, et al. Journal of Lanzhou University of Technology, 2022, 48(3), 27(in Chinese).
吴多明, 汪金满, 王鑫, 等. 兰州理工大学学报, 2022, 48(3), 27.
27 Hu H X, Zhang Q, Ding D H. Concrete, 2010(6), 31(in Chinese).
胡海霞, 章青, 丁道红. 混凝土, 2010(6), 31.
28 Liu H B, Ju Y, Sun H F, et al. Journal of China Coal Society, 2013, 38(9), 1583(in Chinese).
刘红彬, 鞠杨, 孙华飞, 等. 煤炭学报, 2013, 38(9), 1583.
29 Li Y X, Chen Y M, He X Y, et al. Journal of the Chinese Ceramic Society, 2003(8), 774(in Chinese).
李永鑫, 陈益民, 贺行洋, 等. 硅酸盐学报, 2003(8), 774.
30 Wang Y. Study on frost resistance and fractal characteristics of the pore of concrete under dry-wet circulation. Master's Thesis, Shenyang Jianzhu University, China, 2016(in Chinese).
王钰. 混凝土干湿循环抗冻性能及孔隙分形特征研究. 硕士学位论文, 沈阳建筑大学, 2016.
31 Zhang J B. Research on concrete pore fractal characteristic and its representation to chloride diffusivity. Master's Thesis, China Building Materials Academy, China, 2010(in Chinese).
张建波. 混凝土孔隙分形特征表征氯离子渗透性能研究. 硕士学位论文, 中国建筑材料科学研究总院, 2010.
32 Zheng S S, Qin Q, Ren M N, et al. Journal of Functional Materials, 2015, 46(21), 21001(in Chinese).
郑山锁, 秦卿, 任梦宁, 等. 功能材料, 2015, 46(21), 21001.
33 He X Y, Han K, Hao T H, et al. Journal of Basic Science and Engineering, 2019, 27(3), 658(in Chinese).
何晓雁, 韩恺, 郝贠洪, 等. 应用基础与工程科学学报, 2019, 27(3), 658.
34 Li J. Freezing conditions and air-entraining agent study on frost resistance of concrete. Master's Thesis, Shenyang Jianzhu University, China, 2016(in Chinese).
李静. 受冻条件及引气剂对混凝土抗冻性影响的研究. 硕士学位论文, 沈阳建筑大学, 2016.
35 Xu C D, Xie J L, Ding L Y, et al. Water Resources and Hydropower Engineering, 2017, 48(3), 113(in Chinese).
徐存东, 谢佳琳, 丁廉营, 等. 水利水电技术, 2017, 48(3), 113.
36 Zhang K. Early strength and freezing resistance experimental study of air-entrained concrete under -3 ℃ sustained preservation of the environment. Master's Thesis, Lanzhou Jiaotong University, China, 2016(in Chinese).
张凯. 持续-3 ℃养护环境下引气混凝土早期强度及抗冻性试验研究. 硕士学位论文, 兰州交通大学, 2016.
37 Gao J, Yang H C, Xiong J B, et al. Port & Waterway Engineering, 2016(5), 31(in Chinese).
高军, 杨海成, 熊建波, 等. 水运工程, 2016(5), 31.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[12] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[13] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[14] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed