Study on Improving Frost Resistance of Concrete with CTF Synergist
WANG Xi1,2, ZHANG Yunsheng1,2, ZHANG Yu1,2,*, QIAO Hongxia1,2, LU Chenggong1,2, Hakuzweyezu Theogene3,4, LIU Zhichao1,2, LI Zhonghui1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou 730050, China 3 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 4 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In this work, NaCl solution with 3% mass concentration was used as the medium to test the frost resistance of concrete. The effect of CTF (coal tar fuel) on the frost resistance of concrete was studied by three indexes: ultrasonic wave velocity loss rate (Cn), mass denudation rate (MB) and solution suction rate (WS). At the same time, the effect of CTF on the pore structure in concrete was analyzed deeply. Based on the fractal model of the pore, the relationship between the fractal dimension (D) and the ultrasonic wave velocity loss rate (Cn) was established. The results show that CTF synergist can effectively improve the frost resistance of concrete and the improvement is most obvious when the content is 0.7%. Compared with ordinary concrete, when the cement content is reduced by 10% and the CTF synergist is added by 0.7%, the ultrasonic velocity loss rate (Cn) of concrete is smaller after 100 cycles of freezing and thawing and the mass denudation rate (MB) of concrete is reduced by 12.51%. In addition, when the NaCl solution absorption rate (WS) is decreased by 0.83%, the number of pores with internal diameter specifications less than 100 μm is increased by 180%, and the number of pores with internal diameter specifications larger than 100 μm is decreased by 18.18%.
1 Zhang Z W, Zhang Z H, Wang X. Structures, 2022, 37, 947. 2 Zhang P, Shang J Q, Fan J J, et al. Construction and Building Materials, 2022, 316, 125822. 3 Zheng X Y, Wang Y R, Zhang S Q, et al. Construction and Building Materials, 2022, 330, 127254. 4 Wei X, Shen Y J, Li X T, et al. Construction and Building Materials, 2022, 327, 126986. 5 Xue C Z, Shen A Q, Qiao H X. Journal of South China University of Technology(Natural Sciece Edition), 2020, 48(3), 136(in Chinese). 薛翠真, 申爱琴, 乔宏霞. 华南理工大学学报(自然科学版), 2020, 48(3), 136. 6 Ma H Y, Sun W, Zhang J Y, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(6), 797(in Chinese). 麻海燕, 孙伟, 张建业, 等. 南京航空航天大学学报, 2010, 42(6), 797. 7 Chen J Z, Zhao T J, Zhang P, et al. China Concrete and Cement Products, 2020(1), 16(in Chinese). 陈际洲, 赵铁军, 张鹏, 等. 混凝土与水泥制品, 2020(1), 16. 8 Wu P C, Yang Q B, Xu J H, et al. Journal of Building Materials, 2020, 23(2), 317(in Chinese). 吴鹏程, 杨全兵, 徐俊辉, 等. 建筑材料学报, 2020, 23(2), 317. 9 Dong H L, Li H J, Yang Z Q, et al. Materials Reports, 2024, 38(2), 143(in Chinese). 董昊良, 李化建, 杨志强, 等. 材料导报, 2024, 38(2), 143. 10 Ge X L, Ke M Y, Liu W B, et al. Materials Reports, 2024, 38(12), 111(in Chinese). 戈雪良, 柯敏勇, 刘伟宝, 等. 材料导报, 2024, 38(12), 111. 11 Guan H, Long X, Ding S, et al. Materials Reports, 2024, 38(16), 149(in Chinese). 关虓, 龙行, 丁莎, 等. 材料导报, 2024, 38(16), 149. 12 Shen H S, He W H, Zhao C Z, et al. Mining Safety & Environmental Protection, 2021, 48(6), 65(in Chinese). 申海生, 和卫红, 赵春洲, 等. 矿业安全与环保, 2021, 48(6), 65. 13 Hao X F, Hao B Y, Xie Y S, et al. Mining Safety & Environmental Protection, 2019, 46(5), 60(in Chinese). 郝晓飞, 郝兵元, 谢益盛, 等. 矿业安全与环保, 2019, 46(5), 60. 14 Yang Q B. Journal of Building Materials, 2007(3), 266(in Chinese). 杨全兵. 建筑材料学报, 2007(3), 266. 15 Yang Q B. Journal of Building Materials, 2005(5), 495(in Chinese). 杨全兵. 建筑材料学报, 2005(5), 495. 16 Xiong O M. Science & Technology Information, 2018, 16(12), 70(in Chinese). 熊欧敏. 科技资讯, 2018, 16(12), 70. 17 Mayercsik N P, Vandamme M, Kurtis K E. Cement and Concrete Research, 2016, 88, 43. 18 Yang Y, Feng Q G, Zhu H Y, et al. Concrete, 2016(2), 134(in Chinese). 杨阳, 冯庆革, 朱惠英, 等. 混凝土, 2016(2), 134. 19 Wang S Y. Development Guide to Buiding Materials, 2014, 12(20), 60(in Chinese). 王树源. 建材发展导向, 2014, 12(20), 60. 20 Chen L, Guo H B, Lin N, et al. Fujian Construction Science & Technology, 2014(6), 39(in Chinese). 陈亮, 郭汉彬, 林娜, 等. 福建建设科技, 2014(6), 39. 21 Liu D S. Study on application performances of CTF synergist in the commercial concrete. Master's Thesis, Chongqing University, China, 2012(in Chinese). 刘道胜. CTF增效剂在商品混凝土中的应用性能研究. 硕士学位论文, 重庆大学, 2012. 22 Xu F. Effect of synergist CTF on properties of cement-based materials. Master's Thesis, Central South University, China, 2011(in Chinese). 许富. 增效剂CTF对水泥基材料性能的影响. 硕士学位论文, 中南大学, 2011. 23 JGJ53-92. Technical requirements and test method of gravel and for ordinary concrete, China Construction Industry Press, China, 1994(in Chinese). JGJ53-92. 普通混凝土用碎石或卵石质量标准及检验方法, 中国建筑工业出版社, 1994. 24 JGJ52-2006. Standard for technical requirements and test method of sand and crushed stone for ordinary concrete, China Construction Industry Press, China, 2007(in Chinese). JGJ52-2006. 普通混凝土用砂、石质量及检验方法标准, 中国建筑工业出版社, 2007. 25 JGJ63-2006. Standard of water for concrete, China Construction Industry Press, China, 2006(in Chinese). JGJ63-2006. 混凝土用水标准, 中国建筑工业出版社, 2006. 26 Wu D M, Wang J M, Wang X, et al. Journal of Lanzhou University of Technology, 2022, 48(3), 27(in Chinese). 吴多明, 汪金满, 王鑫, 等. 兰州理工大学学报, 2022, 48(3), 27. 27 Hu H X, Zhang Q, Ding D H. Concrete, 2010(6), 31(in Chinese). 胡海霞, 章青, 丁道红. 混凝土, 2010(6), 31. 28 Liu H B, Ju Y, Sun H F, et al. Journal of China Coal Society, 2013, 38(9), 1583(in Chinese). 刘红彬, 鞠杨, 孙华飞, 等. 煤炭学报, 2013, 38(9), 1583. 29 Li Y X, Chen Y M, He X Y, et al. Journal of the Chinese Ceramic Society, 2003(8), 774(in Chinese). 李永鑫, 陈益民, 贺行洋, 等. 硅酸盐学报, 2003(8), 774. 30 Wang Y. Study on frost resistance and fractal characteristics of the pore of concrete under dry-wet circulation. Master's Thesis, Shenyang Jianzhu University, China, 2016(in Chinese). 王钰. 混凝土干湿循环抗冻性能及孔隙分形特征研究. 硕士学位论文, 沈阳建筑大学, 2016. 31 Zhang J B. Research on concrete pore fractal characteristic and its representation to chloride diffusivity. Master's Thesis, China Building Materials Academy, China, 2010(in Chinese). 张建波. 混凝土孔隙分形特征表征氯离子渗透性能研究. 硕士学位论文, 中国建筑材料科学研究总院, 2010. 32 Zheng S S, Qin Q, Ren M N, et al. Journal of Functional Materials, 2015, 46(21), 21001(in Chinese). 郑山锁, 秦卿, 任梦宁, 等. 功能材料, 2015, 46(21), 21001. 33 He X Y, Han K, Hao T H, et al. Journal of Basic Science and Engineering, 2019, 27(3), 658(in Chinese). 何晓雁, 韩恺, 郝贠洪, 等. 应用基础与工程科学学报, 2019, 27(3), 658. 34 Li J. Freezing conditions and air-entraining agent study on frost resistance of concrete. Master's Thesis, Shenyang Jianzhu University, China, 2016(in Chinese). 李静. 受冻条件及引气剂对混凝土抗冻性影响的研究. 硕士学位论文, 沈阳建筑大学, 2016. 35 Xu C D, Xie J L, Ding L Y, et al. Water Resources and Hydropower Engineering, 2017, 48(3), 113(in Chinese). 徐存东, 谢佳琳, 丁廉营, 等. 水利水电技术, 2017, 48(3), 113. 36 Zhang K. Early strength and freezing resistance experimental study of air-entrained concrete under -3 ℃ sustained preservation of the environment. Master's Thesis, Lanzhou Jiaotong University, China, 2016(in Chinese). 张凯. 持续-3 ℃养护环境下引气混凝土早期强度及抗冻性试验研究. 硕士学位论文, 兰州交通大学, 2016. 37 Gao J, Yang H C, Xiong J B, et al. Port & Waterway Engineering, 2016(5), 31(in Chinese). 高军, 杨海成, 熊建波, 等. 水运工程, 2016(5), 31.