Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040119-10    https://doi.org/10.11896/cldb.24040119
  金属与金属基复合材料 |
颗粒增强耐热钛基复合材料设计制备研究进展
脱锦鹏1,2, 陈安琦3,*, 姚富升4, 徐俊杰2, 李响3, 董龙龙3, 杨义1,*
1 上海理工大学材料与化学学院,上海 200093
2 西安稀有金属材料研究院有限公司,西安 710016
3 西北有色金属研究院,西安 710016
4 江苏科技大学材料科学与工程学院,江苏 镇江 212100
Research Progress on the Design and Fabrication of Discontinuously Reinforced Heat-resistant Titanium Matrix Composites
TUO Jinpeng1,2, CHEN Anqi3,*, YAO Fusheng4, XU Junjie2, LI Xiang3, DONG Longlong3, YANG Yi1,*
1 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
3 Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, China
4 School of Materials and Chemistry, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
下载:  全 文 ( PDF ) ( 28870KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空航天领域新型超高速飞行器及高推比发动机等装备的开发应用,颗粒增强耐热钛基复合材料由于具有轻质、耐热、高强、加工变形性能优异等特性受到研究人员的广泛关注。通过向钛合金基体中添加多元、多尺度的颗粒增强相,以控制其形成特定构型的微观组织结构是提高该类材料耐热性的有效途径之一。本文从钛合金基体选择、增强相调控方式、复合材料的制备技术等方面综述了目前国内外颗粒增强耐热钛基复合材料的研究现状,并结合先进制造技术提出该类复合材料的研究展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
脱锦鹏
陈安琦
姚富升
徐俊杰
李响
董龙龙
杨义
关键词:  钛基复合材料  显微组织  服役性能  构型设计  先进制造技术    
Abstract: With the development and application of novel high speed aircraft and high thrust ratio engines in the aerospace field, discontinuously reinforced heat-resistant titanium matrix composites (DRTMCs) have been focused extensively owing to its excellent properties such as lightweight, heat resistance, high strength, and superior processing and deformation performance. An effective method to improve the heat resistance of DRTMCs is to add multiple and multi-scale discontinuous reinforcements to titanium alloy matrix to control their formation of specific microstructural configurations. In this summary, the current research process of DRTMCs is reviewed from the aspects of titanium alloy matrix selection, methods of reinforcement phase regulation, manufacturing techniques of the composites and so on. Furthermore, in conjunction with advanced manufacturing technologies, future research prospects for this class of composites are presented.
Key words:  titanium matrix composites    microstructure    service performance    configuration design    advanced manufacturing technology
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB331  
基金资助: 国家自然科学基金(52271138;52271108);陕西省重点研发计划(2021SF-296; 2023-YBYG-433);西安英才计划青年项目(XAYC 2023030); 上海市自然科学基金面上项目(21ZR1445100); 西安市高性能钛合金材料重点实验室开放基金(NIN-HTL-2022-02)
通讯作者:  陈安琦,西北有色金属研究院先进材料研究所工程师。目前主要从事金属基复合材料、二维功能材料等方面的研究工作。caq920730@163.com;
杨义,上海理工大学材料与化学学院副教授。长期从事航空航天金属材料及增材制造研究工作。yiyang.imr@163.com   
作者简介:  脱锦鹏,现为上海理工大学材料与化学学院和西安稀有金属材料研究院有限公司联合培养硕士研究生,在杨义副教授和张于胜教授的指导下开展研究工作。目前从事增材制造技术在钛基复合材料中的应用研究。
引用本文:    
脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
TUO Jinpeng, CHEN Anqi, YAO Fusheng, XU Junjie, LI Xiang, DONG Longlong, YANG Yi. Research Progress on the Design and Fabrication of Discontinuously Reinforced Heat-resistant Titanium Matrix Composites. Materials Reports, 2025, 39(8): 24040119-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040119  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040119
1 Attar H, Ehtemam-Haghighi S, Kent D, et al. International Journal of Machine Tools and Manufacture, 2018, 133, 85.
2 Hayat M D, Singh H, He Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 418.
3 Wang Z, Tan Y N, Li N. Journal of Alloys and Compounds, 2023, 965, 171030.
4 Zheng B W, Dong F Y, Yuan X G, et al. Tribology International, 2020, 145, 106177.
5 Lyu W J, Zhang D, Han Y F, et al. Aeronautical Manufacturing Technology, 2023, 66(4), 38(in Chinese).
吕维洁, 张荻, 韩远飞, 等. 航空制造技术, 2023, 66(4), 38.
6 Han Y F, Le J W, Fang M H, et al. Materials China, 2020, 39(12), 945 (in Chinese).
韩远飞, 乐建温, 方旻翰, 等. 中国材料进展, 2020, 39(12), 945.
7 Yang H, Chen X H, Huang G S, et al. Journal of Magnesium and Alloys, 2022, 10(9), 2311.
8 Huang L J, Geng L, Peng H X. Materials China, 2019, 38(3), 214 (in Chinese).
黄陆军, 耿林, 彭华新. 中国材料进展, 2019, 38(3), 214.
9 Yao F S, Tuo J P, Chen A Q, et al. Copper Engineering, 2023(6), 21(in Chinese).
姚富升, 脱锦鹏, 陈安琦, 等. 铜业工程, 2023(6), 21.
10 Wang G P, Xu S N, Liu L et al. Copper Engineering, 2023(2), 61(in Chinese).
王国鹏, 胥珊娜, 刘乐, 等. 铜业工程, 2023(2), 61.
11 Sen I, Tamirisakandala S, Miracle D B, et al. Acta Materialia, 2007, 55(15), 4983.
12 Wang B, Huang L J, Geng L. Materials Science and Engineering: A, 2012, 558, 663.
13 Huang L J, Geng L, Peng H X, et al. Materials Science and Enginee-ring: A, 2012, 534, 688.
14 Huang L J, Geng L, Peng H X. Progress in Materials Science, 2015, 71, 93.
15 Ren J T, Li P Y, Xu J J. Copper Engineering, 2024(5), 122(in Chinese).
任嘉腾, 李鹏远, 徐俊杰. 铜业工程, 2024(5), 122.
16 Yang Z F. Microstructure and properties of multivariate reinforced titanium matrix composites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2007 (in Chinese).
杨志峰. 多元增强钛基复合材料的微结构及性能研究. 博士研究论文, 上海交通大学, 2007.
17 Li J X, Han Y F, Yang D Y, et al. Frontiers in Materials, 2019, 6, 276.
18 Qiu P K. Superplastic deformation behaviour and microstructure evolution mechanisms of articulate reinforced heat-resistant titanium matrix compo-sites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2021 (in Chinese).
邱培坤. 颗粒增强耐热钛基复合材料超塑性变形行为与组织演变机理. 博士研究论文, 上海交通大学, 2021.
19 Li S P, Wang X Y, Wei Z C, et al. Scripta Materialia, 2022, 218, 114835.
20 Liu T J. Microstructure and properties of (TiB+La2O3) reinforced heat-resistant titanium matrix composites. Master's Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese).
刘统军. (TiB+La2O3)增强耐热钛基复合材料的组织和性能研究. 硕士学位论文, 上海交通大学, 2015.
21 Zhang Y T. Study of microstructure and mechanical properties of TiBw/Ti60 composites prepared by SPS. Master's Thesis, Shanghai University of Engineering Science, China, 2021 (in Chinese).
张悦婷. SPS制备TiBw/Ti60复合材料显微组织和力学性能的研究. 硕士学位论文, 上海工程技术大学, 2021.
22 Cai C, He S, Li L F, et al. Composites Part B: Engineering, 2019, 164, 546.
23 Jiao Y, Huang L J, Wang S, et al. Journal of Alloys and Compounds, 2017, 704, 269.
24 Wu J. Thermal processing and organisational property evolution of dual-scale particle-reinforced titanium matrix composites. Ph. D. Thesis, Taiyuan University of Technology, China, 2019 (in Chinese).
吴介. 双尺度颗粒增强钛基复合材料热加工及组织性能演变规律研究. 博士学位论文, 太原理工大学, 2021.
25 Yang J H. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α-Ti composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
杨建辉. (TiB+TiC+Y2O3)/α-Ti复合材料变形行为及组织性能研究. 博士学位论文, 哈尔滨工业大学, 2020.
26 Chen B. Deformation and fracture behavior of TiBw/TA15 titanium matrix composite with network reinforcement architecture at elevated temperatures. Master's Thesis, Zhejiang University, China, 2020 (in Chinese).
陈斌. 网状增强TiBw/TA15钛基复合材料高温变形与断裂行为研究. 硕士学位论文, 浙江大学, 2020.
27 Huang F F. Microstructure and properties of in situ TiB reinforced high temperature titanium alloy matrix composites. Master's Thesis, Harbin Institute of Technology, China, 2014. (in Chinese).
黄菲菲. 原位TiB增强高温钛合金基复合材料的组织与性能研究. 硕士研究论文, 哈尔滨工业大学, 2014
28 Fan W D, Dong L L, Zheng F K, et al. Composites Communications, 2023, 42, 101697.
29 Dong L L, Zhang W, Fu Y Q, et al. Carbon, 2021, 184, 583.
30 Lu J W, Dong L L, Liu Y, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105971.
31 Qi J Q. Microstructure and high-temperature deformation behavior of TiC-reinforced high-temperature titanium alloy matrix composites prepared by melt-casting method. Ph. D. Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
戚继球. 熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为, 博士学位论文, 哈尔滨工业大学, 2013.
32 Huang L J, Wang S, Geng L, et al. Composites Science and Technology, 2013, 82, 23.
33 Huang L J, Geng L, Peng H X, et al. Scripta Materialia, 2011, 64(9), 844.
34 Huang L J, Yang F Y, Hu H T, et al. Materials & Design, 2013, 51, 421.
35 Li S P, Wang X Y, Le J W, et al. Composites Part B: Engineering, 2022, 245, 110169.
36 Zhong Z X, Zhang B, Ye J, et al. Materials Science and Engineering: A, 2024, 891, 145996.
37 Zhang B, Zhang F M, Saba F, et al. Journal of Alloys and Compounds, 2021, 859, 157777.
38 Jiao Y, Wang K H, Ceng X, et al. Materials Letters, 2023, 346, 134548.
39 Namini A S, Delbari S A, Nayebi B, et al. Materials Chemistry and Physics, 2020, 251, 123087.
40 Kuang W, Wang M M, Li J X, et al. Materials for Mechanical Engineering, 2015, 39(2), 67(in Chinese).
邝玮, 王敏敏, 李九霄, 等. 机械工程材料, 2015, 39(2), 67.
41 Geng K, Lu W J, Yang Z F, et al. Materials Letters, 2003, 57(24), 4054.
42 Lu W J, Xiao L, Xu D, et al. Journal of Alloys and Compounds, 2007, 433(1), 140.
43 Geng K, Lu W J, Zhang D, et al. Materials & Design, 2003, 24(6), 409.
44 Geng K, Lu W J, Qin Y X, et al. Materials Research Bulletin, 2004, 39(6), 873.
45 Hashin Z, Shtrikman S. Journal of Applied Physics, 2004, 33(10), 3125.
46 Huang L J, Geng L, Peng H X. Materials Science and Engineering: A, 2010, 527(24), 6723.
47 Huang L J, Geng L, Xu H Y, et al. Materials Science and Engineering: A, 2011, 528(6), 2859.
48 Han S W, Xu L J, Zheng Y F, et al. Materials Characterization, 2024, 210, 113785.
49 Zhang J Z, Zhang Y Z, Huang C, et al. Chinese Journal of Lasers, 2011, 38(3), 108(in Chinese).
孙景超, 张永忠, 黄灿, 等. 中国激光, 2011, 38(3), 108.
50 Li J X, Han Y F, Yang D Y, et al. Frontiers in Materials, 2019, 6, 276.
51 Zhong Z X, Zhang B, Ren Y H, et al. Materials Characterization, 2024, 207, 113499.
52 Dong L L, Li X, Sun G D, et al. Composites Communications, 2024, 45, 101787.
53 Wang J H. Casting, microstructure and properties of in situ autogenous titanium matrix composites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese).
王冀恒. 原位自生钛基复合材料的铸造、组织和性能研究, 博士学位论文, 上海交通大学, 2015.
54 Lagos M A, Agote I, Atxaga G, et al. Materials Science and Enginee-ring: A, 2016, 655, 44.
55 Graziani G, Ghezzi D, Boi M, et al. Biomaterials Advances, 2024, 159, 213815.
56 Cao Y K, Liu Y, Li Y P, et al. Mechanics of Materials, 2020, 141, 103260.
57 Fang M H, Han Y F, Shi Z S, et al. Composites Part B: Engineering, 2021, 211, 108683.
58 Tang M K, Zhang L C, Zhang N. Materials Science and Engineering: A, 2021, 814, 141187.
59 Park J G, Keum D H, Lee Y H. Carbon, 2015, 95, 690.
60 Wang Y M, Zhu M, Dong L L, et al. Journal of Alloys and Compounds, 2023, 947, 169557.
61 Wang S, Huang L J, Zhang R, et al. Materials Characterization, 2022, 194, 112425.
62 Liu H Y, Li S F, Liu L, et al. Vacuum, 2023, 217, 112521.
63 Hang Y F, Wei K, Yang X F, et al. Rare Metal Materials and Engineering, 2016, 45(12), 3104.
64 Xiang J, Han Y F, Le J W, et al. Materials Characterization, 2018, 146, 149.
65 Huang G F, Wang J H, Wang Q, et al. Materials Science and Enginee-ring: A, 2021, 811, 140988.
66 Wu W Z, Li X C, Liu Q P, et al. Materials Today Advances, 2022, 16, 100319.
67 Tian X X, Zhao Z, Wang H B, et al. Journal of Alloys and Compounds, 2023, 960, 170687.
68 Nouri A, Rohani Shirvan A, Li Y C, et al. Journal of Materials Science & Technology, 2021, 94, 196.
69 Fujieda T, Cui Y J, Aoyagi K, et al. Materialia, 2018, 4, 367.
70 Li S L, Li S F, Liu H Y, et al. Materials Characterization, 2024, 215, 114132.
71 Zhao X, Lu X, Zuo H N, et al. Ceramics International, 2023, 49(17, Part B), 28920.
72 Guo S, Li Y N, Gu J R, et al. Journal of Materials Research and Technology, 2023, 23, 1934.
[1] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[2] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[3] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[4] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[9] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[10] 潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
[11] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[12] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[13] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[14] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[15] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed