Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040159-7    https://doi.org/10.11896/cldb.24040159
  无机非金属及其复合材料 |
水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例
岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌*
中国建筑材料科学研究总院有限公司,北京 100024
Mechanism, Application, and Challenges for Cement Solidification of Medium and Low Radioactive Waste: a Case Study of 90Sr
YUE Hanwei, YANG Debo, CUI Zhu, ZHU Zhiguo, YU Lei, ZHU Yongchang*
China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 7142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核电站、后处理厂在运行期间会产生大量废液、废树脂、废活性炭和化学泥浆等中、低放射性水平废物。这些废物占据核燃料闭式循环废物总产生量的90%以上,具有毒性大、半衰期长等特点,一旦发生泄漏,将会对生态环境造成严重危害,因此需要对其进行安全高效的处理。水泥固化是处理中、低水平放射性废物最广泛的方法,具有操作简便、工艺简洁和成本低等优点,在过去几十年间得到了普遍的应用。本文以90Sr为例,介绍了核素在水泥水化体系中吸附固化的机理和与之适应的相关材料,回顾了利用水泥固化技术处理废树脂、废液和泥浆的研究进展,阐述了当前水泥固化面临的挑战,并对未来需要解决的技术问题进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳汉威
杨德博
崔竹
朱治国
于雷
朱永昌
关键词:  放射性废物  水泥  固化  核素    
Abstract: During the operation of nuclear power plants and reprocessing plants, a large amount of medium and low-level radioactive wastes such as waste liquid, waste resin, waste activated carbon, chemical slurry will be generated. Which account for more than 90% of the total amount of nuclear fuel closed cycle waste, and have the characteristics of high toxicity and long half-life. Once the leakage occurs, it will cause serious harm to the ecological environment, so it needs to be treated safely and efficiently. Cement solidification technology is the most widely used method for the treatment of low and medium level radioactive wastes for its advantages of simple operation, simple process and low cost in the past few decades. Taking 90Sr nuclide as an example, this summary introduces the mechanism of nuclide adsorption and solidification in cement hydration system and the corresponding materials. In addition, the research status of cement solidification technology for treating waste resin, waste liquid, and slurry is reviewed. Finally, the current challenges are described, and the technology problems that need to be solved in the future are prospected.
Key words:  radioactive waste    cement    solidification    nuclide
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TL941  
通讯作者:  朱永昌,现任中国建筑材料科学研究总院有限公司北京分公司副总经理、石英事业部部长、玻璃固化工程技术中心主任,教授级高级工程师,博士研究生导师。研究方向为石英玻璃、核三废处理技术。13520789538@163.com   
作者简介:  岳汉威,中国建筑材料科学研究总院有限公司正高级工程师。主要从事水泥基材料、核三废处理技术等方面的研究工作。
引用本文:    
岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌. 水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例[J]. 材料导报, 2025, 39(8): 24040159-7.
YUE Hanwei, YANG Debo, CUI Zhu, ZHU Zhiguo, YU Lei, ZHU Yongchang. Mechanism, Application, and Challenges for Cement Solidification of Medium and Low Radioactive Waste: a Case Study of 90Sr. Materials Reports, 2025, 39(8): 24040159-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040159  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040159
1 Xu X G, Bi H F, Yu Y, et al. Journal of Nuclear Materials, 2021, 544, 1.
2 Marcial J, Riley B J, Kruger A A, et al. Journal of Hazardous Materials, 2024, 471, 1.
3 Iwaida T, Nagasaki S, Tanaka S. Studies in Surface Science and Catalysis, 2001, 132, 901.
4 Evans N D M. Cement and Concrete Research, 2008, 38, 543.
5 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295.
6 Reddy D A, Khandelwal S K, Muthiah R, et al. Annals of Nuclear Energy, 2010, 37, 934.
7 Palomo M, Peñalver A, Aguilar C, et al. Journal of Hazardous Materials, 2010, 181, 716.
8 Plbcas L B, Pavlovic R S, Pavlovic S. Progress in Nuclear Energy, 2004, 44(1), 43.
9 Jackson S F, Monka S D, Riaz Z. Applied Radiation and Isotopes, 2014, 94, 254.
10 Gregsona C R, Goddardb D T, Sarsfield M J, et al. Journal of Nuclear Materials, 2011, 412, 145.
11 Osmanlioglu A E. Nuclear Engineering and Technology, 2018, 50, 886.
12 Chena G Y, Lia J W, Chen M, et al. Journal of Nuclear Materials, 2024, 588, 154803.
13 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660.
14 Li M F, Yang C L, Sun Y F, et al. Guangdong Chemical, 2022, 49(5), 123 (in Chinese).
李明富, 杨翠玲, 孙宇凡, 等. 广东化工, 2022, 49(5), 123.
15 Hafeez M A, Jeon J S, Hong S K, et al. Journal of Environmental Che-mical Engineering, 2021, 9(1), 104740.
16 Hafeez M A, Singh B K, Yang S H, et al. Chemical Engineering Journal Advances, 2023, 14, 100461.
17 Liu G B, Wang B C, Jiang Y C, et al. Journal of Nuclear and Radiochemistry, 2018, 40(6), 393(in Chinese).
刘国彪, 王兵臣, 蒋玉川, 等. 核化学与放射化学, 2018, 40(6), 393.
18 Hastings J J, Rhodes D, Fellerman A S, et al. Powder Technology, 2007, 174, 18.
19 Barlow S T, Fisher A J, Bailey D J, et al. Journal of Nuclear Materials, 2021, 552, 152965.
20 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375.
21 Reddy D A, Khandelwal S K, Muthiah R, et al. Annals of Nuclear Energy, 2010, 37, 934.
22 Skripchenko S Y, Nalivaiko K A, Titova S M, et al. Hydrometallurgy, 2024, 224, 106255.
23 Kozai N, Suzuki S, Aoyagi N, et al. Water Research, 2015, 68, 616.
24 Zhang X Y, Gu P, Liu Y. Chemosphere, 2019, 215, 543.
25 Abdel-Rahman R O, Zin-El-Abidin D H A, Abou-Shady H, et al. Chemical Engineering Journal, 2013, 228, 772.
26 Zheng Z, Li Y X, Cui M X, et al. Science of the Total Environment, 2021, 755, 142581.
27 Kwon S H, Kim C H, Han E H, et al. Journal of Hazardous Materials, 2021, 408, 124419.
28 Putero S H, Rosita W, Santosa H B. Procedia Environmental Sciences, 2013, 17, 703.
29 Walling S A, Gardner L J, Prentice D P. Cement and Concrete Compo-sites, 2023, 135, 104823.
30 Lieberman R N, Green U, Segev G, et al. Fuel, 2015, 153, 437.
31 Tits J, Wieland E, Müller C J, et al. Journal of Colloid and Interface Science, 2006, 300, 78.
32 Youssef M, Pellenq R G M, Yildiz B. Physics and Chemistry of the Earth, 2014, 70-71, 39.
33 Dezerald L, Kohanoff J, Correa A A, et al. Environmental Science and Technology, 2015, 49, 13676.
34 Bahraq A A, Al-Osta M A, Al-Amoudi O S B, et al. Engineering, 2022, 15, 165.
35 Hong S Y, Glasser F P. Cement and Concrete Research, 1999, 29, 1893.
36 Shiner M E, Harnik Y, Klein-Ben D O, et al. Progress in Nuclear Energy, 2023, 159, 104634.
37 Geng G Q, Vasin R N, Li J Q, et al. Cement and Concrete Research, 2018, 113, 186.
38 Li K F, Pang X Y. Cement and Concrete Research, 2014, 65, 52.
39 Shrivastava O P, Shrivastava R. Cement and Concrete Research, 2001, 31, 1251.
40 Li J F, Chen L, Wang J L. Progress in Nuclear Energy, 2021, 141, 103957.
41 Ambrosino F, Esposito A M, Mancini F, et al. The European Physical Journal Plus, 2023, 138, 909.
42 Abdollahi T, Towfighi J, Rezaei-Vahidian H. Environmental Technology & Innovation, 2020, 17, 100592.
43 El-Kamash A M, El-Naggar M R, El-Dessouky M I. Journal of Hazar-dous Materials, 2006, B136, 310.
44 Osmanlioglu A E. Journal of Hazar-dous Materials, 2006, B137, 332.
45 Vyšvail M, Bayer P. Procedia Engineering, 2016, 151, 162.
46 Shi Y J. Performance research of weakly alkalinity alkali-activated slag cement immobilsing nuclear wastes. Ph. D. Thesis, Chongqing University, China, 2007 (in Chinese).
石拥军. 低碱度矿渣水泥固化放射性废物性能研究. 博士学位论文, 重庆大学, 2007
47 Kumar S, Kumar R, Bandopadhyay A, et al. Cement & Concrete Compo-sites, 2008, 30, 679.
48 Li C, Sun H H, Li L T. Cement and Concrete Research, 2010, 40, 1341.
49 Wang T F, Tu Y M, Guo T, et al. Journal of Environmental Applied Clay Science, 2024, 243, 107042.
50 Vandevenne N, Iacobescu R I, Pontikes Y, et al. Journal of Nuclear Materials, 2018, 503, 1.
51 Matsuzuru H, Ito A. Annals of Nuclear Energy, 1977, 4, 465.
52 Bougara A, Lynsdale C, Milestone N B. Cement & Concrete Composites, 2010, 32, 319.
53 Liu J R, Xu Y D, Zhang W S, et al. Progress in Nuclear Energy, 2024, 169, 105106.
54 Guo X, Zeng M L, Yu H D, et al. Journal of Cleaner Production, 2024, 459, 142457.
55 Wild S, Kinuthia J M, Jones G I. Engineering Geology, 1999, 51, 257.
56 Bijen J. Construction and Building Materials, 1996, 10(5), 309.
57 Taylor R, Richardson I G, Brydson R M D. Cement and Concrete Research, 2010, 40, 971.
58 Renaudin G, Filinchuk Y, Neubauer J. Cement and Concrete Research, 2010, 40, 370.
59 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295.
60 Zhong H X, Yang L, Wang F Z. Cement and Concrete Research, 2024, 182, 107556.
61 Xu X G, Bi H F, Yu Y. Journal of Nuclear Materials, 2021, 544, 152701.
62 Chrysochoou M, Dermatas D. Journal of Hazardous Materials, 2006, 136, 20.
63 Lin J Y, Mahasti N N N, Huang Y H. Journal of Hazardous Materials, 2021, 407, 124401.
64 Christensen A N, Jensen T R, Hanson J C. Journal of Solid State Che-mistry, 2004, 177, 1944.
65 Lothenbach B, Winnefeld F. Cement and Concrete Research, 2006, 36, 209.
66 Collepardi M. Cement & Concrete Composites, 2003, 25, 401.
67 Tao Y X, Rahul A V, Manu K, et al. Cement and Concrete Composites, 2023, 137, 104908.
68 Liu J R, Xu Y D, Wang J L, et al. Journal of the Australian Ceramic Society, 2024, 60, 1131.
69 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375.
70 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660.
71 Coumes C C D, Courtois S, Peysson S. Cement and Concrete Research, 2009, 39, 740.
72 Bescop P L, Bouniol P, Jorda M. Materials Research Society, 1990, 176, 183.
73 Osmanlioglu A E. Progress in Nuclear Energy, 2007, 49, 20.
74 Plecas I, Pavlovic R, Pavlovic S. Journal of Nuclear Materials, 2004, 327, 171.
75 Li J F, Zhao G, Wang J L. Nuclear Engineering and Design, 2005, 235, 817.
76 Sun Q N, Li J F, Wang J L. Nuclear Engineering and Design, 2011, 241, 5308.
77 Bagosi S, Csetenyi L J. Cement and Concrete Research, 1999, 29, 479.
78 Li J F, Wang J L. Journal of Hazardous Materials, 2006, B135, 443.
79 Lee W H, Cheng T W, Ding Y C, et al. Journal of Environmental Ma-nagement, 2019, 235, 19.
80 Lafond E, Coumes C C D, Gauffinet S, et al. Journal of Nuclear Materials, 2017, 483, 121.
81 Lafond E, Coumes C C D, Gauffinet S, et al. Cement and Concrete Research, 2015, 69, 61.
82 Neji M, Bary B, Bescop P L, et al. Journal of Nuclear Materials, 2015, 467, 544.
83 Duan Q J, Ge S H, Wang C Y. Journal of Power Sources, 2013, 243, 773.
84 Cronin J, Collier N. Mineralogical Magazine, 2012, 76(8), 2901.
85 Sayenko S Y, Shkuropatenko V A, Pylypenko O V, et al. Progress in Nuclear Energy, 2022, 152, 104315.
86 Covill A, Hyatt N C, Hill J, et al. Advances in Applied Ceramics, 2011, 110(3), 151.
87 Sinha P K, Shanmugamani A G, Renganathan K, et al. Annals of Nuclear Energy, 2009, 36, 620.
88 Zheng Z, Li Y X, Zhang Z H, et al. Journal of Hazardous Materials, 2020, 388(15), 121805.
89 Lee H K, Shon J S, Jang W H, et al. Annals of Nuclear Energy, 2023, 182, 109597.
90 Plecas I, Dimovic S, Smiciklas I. Progress in Nuclear Energy, 2006, 48, 495.
91 Kot’átková J, Zatloukal J, Reiterman P, et al. Journal of Environmental Radioactivity, 2017, 178-179, 147.
92 Walkley B, Ke X Y, Hussein O H, et al. Journal of Hazardous Materials, 2020, 382, 121015.
93 Li Q, Ma H S, Tang Y J, et al. Cement and Concrete Research, 2021, 144, 106430.
94 Li B, Ling X, Liu X, et al. Cement and Concrete Composites, 2019, 102, 94.
95 Kononenko O A, Kozlitin E A. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332, 4065.
96 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660.
97 Chen W, Ling X, Li Q, et al. Construction and Building Materials, 2019, 215, 777.
98 Sun Q N, Li J F, Wang J L. Nuclear Engineering and Design, 2011, 241, 4341.
99 Wang J, Shi D Q, Xia Y, et al. Journal of Environmental Chemical Engineering, 2024, 12(3), 113129.
100 Wang J L, Wan Z. Progress in Nuclear Energy, 2015, 78, 47.
101 Castro H A, Luca V, Banchi H L. Environmental Science and Pollution Research, 2017, 25, 21403.
102 Hafeeza M A, Singha B K, Yang S H, et al. Chemical Engineering Journal Advances, 2023, 14, 100461.
103 Dubois M A, Dozol J F, Nicotra C, et al. Journal of Analytical and Applied Pyrolysis, 1995, 31, 129.
104 Meng X, Désesquelles P, Xu J L. Journal of Environmental Sciences, 2024, 135, 433.
105 Gorbunova O. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 361.
106 Bar-Nes G, Klein-BenDavid O, Chomat L, et al. Cement and Concrete Research, 2018, 107, 152.
107 Perez-Cortes P, Garcia-Lodeiro I, Alonso M A, et al. Cement and Concrete Composites, 2024, 149, 105517.
108 Vyas M, Kulshrestha M. Materials Today: Proceedings, DOI:10. 1016/ j. matpr. 2023. 01. 275.
109 Wang R, Wang J S. Annals of Nuclear Energy, 2020, 147, 107679.
110 Domanskii I V, Mil’chenko A I, Sargaeva V Y, et al. Theoretical Foundations of Chemical Engineering, 2023, 57(2), 154.
111 Duffó G S, Farina S B, Schulz F M. Journal of Nuclear Materials, 2013, 438, 116.
112 Frizon F, Coumes C C D. Journal of Nuclear Materials, 2006, 359, 162.
113 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 417, 112794.
114 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 418, 112932.
115 Morin V, Garrault S, Begarin F, et al. Cement and Concrete Research, 2010, 40, 1459.
116 Tokar E A, Matskevich A I, Palamarchuk M S, et al. Nuclear Engineering and Technology, 2021, 53, 2918.
117 Zhao P, Zhou L L, Bai M, et al. Construction and Building Materials, 2019, 226, 483.
118 Ferreira E G A, Marumo J T, Franco M K K D, et al. Cement and Concrete Composites, 2019, 103, 339.
119 Barbhuiya S, Das S S, Qureshi T, et al. Journal of Environmental Ma-nagement, 2024, 356, 120712.
120 Stefanovsky S V, Yudintsev S V, Vinokurov S E, et al. Geochemistry International, 2016, 54(13), 1136.
[1] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[2] 刘奎生, 崔勇, 于晓, 栾海涛, 宋奇达, 陈佳俊, 马子翔, 房奎圳. 恒湿与变湿养护条件下MgO膨胀剂对水泥砂浆膨胀性能的影响分析[J]. 材料导报, 2025, 39(7): 24020085-7.
[3] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[4] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[5] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[6] 王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
[7] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[8] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[9] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[10] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[11] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[12] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[13] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[14] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed