Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 23100207-7    https://doi.org/10.11896/cldb.23100207
  无机非金属及其复合材料 |
亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究
明阳1,2,3,4, 肖登凯1,2,4, 李玲1,2,3,4,*, 李忻恒1,2,4, 朱奇阳1,2,4, 黄登科1,2,4, 任昊1,2,4
1 桂林理工大学土木工程学院,广西 桂林 541004
2 广西绿色建材与建筑工业化重点实验室,广西 桂林 541004
3 桂林理工大学有色金属矿产勘查与资源高效利用省部共建协同创新中心,广西 桂林 541004
4 广西工业废渣建材资源利用工程技术研究中心,广西 桂林 541004
Study on Curing Mechanism of Nitrite Type Cl- Curing Agent in Sea Sand Concrete
MING Yang1,2,3,4, XIAO Dengkai1,2,4, LI Ling1,2,3,4,*, LI Xinheng1,2,4, ZHU Qiyang1,2,4, HUANG Dengke1,2,4, REN Hao1,2,4
1 College of Civil Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Green Building Materials and Construction Industrialization, Guilin 541004, Guangxi, China
3 Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, Guangxi, China
4 Guangxi Engineering and Technology Center for Utilization of Industrial Waste Residue in Building Materials, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 7444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海砂中含有大量氯离子是阻碍其在水泥基材料中应用的主要瓶颈。本工作使用NaAlO2、Ca(OH)2、Ca(NO2)2三种材料,采用水热法制备了一种新型的亚硝酸型氯离子固化剂(NO2-ClCA),并将其应用于水泥基材料中,该固化剂表现出良好的氯离子固化效果。通过XRD、SEM等手段对NO2-CICA的作用机理进行了表征分析。结果表明:NaAlO2和Ca(NO2)2质量分数分别为15%和6%,搅拌速度为30 r/s,反应温度为60 ℃是NO2-ClCA的最佳制备工艺。通过在水泥基材料中添加NO2-ClCA,可最终实现氯离子固化1.33 mg/g。NO2-ClCA主要成分为NO2--AFm与C3AH6;NO2-ClCA对氯离子的固化作用主要为化学固化。具体表现为,NO2--AFm与孔溶液中游离的Cl-发生阴离子置换反应生成Friedel’s盐,从而提高体系的化学结合能力,C3AH6在参与阴离子置换反应的同时额外补充了体系中的钙相与铝相,促使C-S-H凝胶向C-(A)-S-H凝胶转化,提高体系的物理吸附能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
明阳
肖登凯
李玲
李忻恒
朱奇阳
黄登科
任昊
关键词:  氯离子固化  正交试验  海砂  胶凝材料  水化产物  定量分析    
Abstract: The large amount of chloride ions contained in sea sand is the main bottleneck hindering its application in cement-based materials. In this work, three materials, NaAlO2, Ca(OH)2, and Ca(NO2)2, were used to prepare a new nitrite-type chloride ion curing agent (NO2-ClCA) by hydrothermal method. Through adding this agent in the cement-based materials, it showed a good chloride ion curing ability. Finally, the mechanism of NO2-ClCA was analyzed using XRD, SEM and other methods. The results showed that the optimal method to get NO2-ClCA is with the mass fraction of NaAlO2 and Ca(NO2)2 of 15% and 6%, respectively, the stirring rate of 30 r/s, and the reaction temperature of 60 ℃. By adding NO2-ClCA to cement-based materials, chloride ion curing of 1.33 mg/g can be achieved. The main components of NO2-ClCA are NO2--AFm and C3AH6. The curing effect of NO2-ClCA on chloride ions is mainly chemical curing. Specifically, NO2--AFm reacts with free Cl- in the pore solution to form Friedel's salt, which improves the chemical binding capacity of the system. C3AH6 participates in the anion replacement reaction and supplements the calcium and aluminum phases in the system, which can promote the conversion of C-S-H gel to C-(A)-S-H gel to improve the physical adsorption capacity of the system.
Key words:  chloride ion curing    orthogonal experiment    sea sand    cementitious material    hydration product    quantitative analysis
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TU528  
基金资助: 广西科技重大专项(桂科AA22068073-3);中央引导地方科技发展资金项目(20221229);国家自然科学基金(52368030);广西绿色建材与建筑工业化重点实验室基金(桂科能22-J-21-20)
通讯作者:  李玲,桂林理工大学土木工程学院助理研究员。主要从事化学建材功能材料、固废资源化利用及电化学等方面的研究工作。liling540220@163.com   
作者简介:  明阳,桂林理工大学土木工程学院研究员、硕士研究生导师。主要从事超高性能混凝土、固废资源化利用和新型外加剂等方面的研究工作。
引用本文:    
明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
MING Yang, XIAO Dengkai, LI Ling, LI Xinheng, ZHU Qiyang, HUANG Dengke, REN Hao. Study on Curing Mechanism of Nitrite Type Cl- Curing Agent in Sea Sand Concrete. Materials Reports, 2025, 39(8): 23100207-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100207  或          https://www.mater-rep.com/CN/Y2025/V39/I8/23100207
1 Zou F, Zhang M, Hu C, et al. Chemical Engineering Journal, 2021, 412, 128569.
2 Deng Z C, Zhao L Z, Lian Y H, et al. Materials Reports, 2021, 35(12), 12070(in Chinese).
邓宗才, 赵连志, 连怡红. 材料导报, 2021, 35(12), 12070.
3 Zhou S W, Li Q P. Science & Technology Review, 2020, 38(14), 17(in Chinese).
周守为, 李清平. 科技导报, 2020, 38(14), 17.
4 Wang S J, Liu X Q, Dai Q F, et al. Marine Geology & Quaternary Geology, 2003, 23(3), 7(in Chinese).
王圣洁, 刘锡清, 戴勤奋, 等. 海洋地质与第四纪地质, 2003, 23(3), 7.
5 Liu J, Jiang Z, Zhao Y, et al. Materials, 2020, 13(17), 3900.
6 Chen L, Li S G, Zhang H, et al. Journal of Hohai University(Natural Sciences), 2022, 50(3), 104, (in Chinese).
陈莉, 李沙罡, 张欢, 等. 河海大学学报(自然科学版), 2022, 50(3), 104.
7 Liu Y M, Yang L, Rao F, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(9), 3059(in Chinese).
刘玉美, 杨浪, 饶峰, 等. 硅酸盐通报, 2023, 42(9), 3059.
8 Zeng L, Yu W, Mo Z, et al. China Ocean Engineering, 2023, 37(2), 272.
9 Qin F C, Qi H Q, Meng Z B, et al. Materials Reports, 2022, 36(6), 158(in Chinese).
秦芳诚, 亓海全, 孟征兵, 等. 材料导报, 2022, 36(6), 158.
10 Li X L. Fujian Building Materials, 2020(5), 29(in Chinese).
李秀琳. 福建建材, 2020(5), 29.
11 Mei K Z, Lin X Y, Shu H B, et al. Concrete, 2023(1), 82(in Chinese).
梅侃泽, 林鑫源, 舒海斌, 等. 混凝土, 2023(1), 82.
12 Liao Q, Yu J, Shi T, et al. Composite Structures, 2023, 320, 117183.
13 Sui S Y. Chloride ion transport and adsorption mechanism in limestone powder-calcined clay-cementitious materials. Ph. D. Southeast University, China, 2020(in Chinese).
眭世玉. 氯离子在石灰石粉-煅烧黏土-水泥基材料中的传输及吸附机理研究. 博士学位论文, 东南大学, 2020.
14 Zhang T, Geng J, Liu G J, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(6), 2063, (in Chinese).
张涛, 耿健, 柳根金, 等. 硅酸盐通报, 2022, 41(6), 2063.
15 Liu Q, Zhang J, Su Y, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36, 871.
16 Schade T, Bellmann F, Middendorf B. Cement and Concrete Research, 2022, 153, 106706.
17 Wang J, Hu Z, Chen Y, et al. Cement and Concrete Research, 2022, 157, 106811.
18 Zhu X, Richardson I G. Cement and Concrete Research, 2023, 168, 107156.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[5] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[6] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[7] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[8] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[9] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[10] 聂松, 周健, 徐名凤, 李辉. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 22050304-9.
[11] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[12] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[13] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[14] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[15] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed