Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030005-10    https://doi.org/10.11896/cldb.23030005
  无机非金属及其复合材料 |
水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究
莫耀鸿1, 刘剑辉1,*, 刘乐平2, 陈正1, 蒋增贵1, 史才军3,*
1 广西大学土木建筑工程学院,南宁 530004
2 南宁师范大学化学与材料学院,南宁 530001
3 湖南大学土木工程学院,长沙 410082
Study on Compressive Strength and Chloride Penetration Resistance of Cement-Bagasse Ash-Slag Sea-sand Mortar
MO Yaohong1, LIU Jianhui1,*, LIU Leping2, CHEN Zheng1, JIANG Zenggui1, SHI Caijun3,*
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
3 College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 9588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过单纯型重心设计方法研究水泥-蔗渣灰(SCBA)-矿粉(BFS)三元胶凝材料组成对流动度、抗压强度、氯离子扩散系数、孔隙结构、水化产物以及体积电导率的影响。研究结果表明:尽管随着蔗渣灰掺量的增加,抗压强度下降,但蔗渣灰能显著降低海砂砂浆的氯离子扩散系数。随着矿粉掺量的增加,海砂砂浆抗压强度略微增加,氯离子扩散系数显著降低。当水泥掺量为70%~75%、蔗渣灰为0%~10%、矿粉为10%~30%时,三元体系海砂砂浆的强度最高,氯离子扩散系数最低。海砂砂浆的抗压强度随着毛细孔体积和最可几孔径的增大而减小,氯离子扩散系数是由孔隙结构与孔隙溶液的化学性质共同决定的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫耀鸿
刘剑辉
刘乐平
陈正
蒋增贵
史才军
关键词:  蔗渣灰  矿粉  海砂  氯离子扩散系数  孔隙结构    
Abstract: In this work, the effect of cement-bagasse ash(SCBA)-slag (BFS) ternary cementitious on the fluidity, compressive strength, chloride diffusion coefficient, pore structure, hydration products and bulk conductivity of mortar was studied by using simplex centroid design method. The results showed that the compressive strength decreased with the increase of bagasse ash content, but it can significantly reduce the chloride diffusion coefficient of sea-sand mortar. With the increase of the content of slag, the compressive strength increased slightly, and the chloride diffusion coefficient decreased significantly. When the cement content was 70%—75%, bagasse ash was 0%—10%, and slag was 10%—30%, the strength of sea-sand mortar was the highest, and the chloride diffusion coefficient was the lowest. The compressive strength of sea-sand mortar decreased with the increase of capillary pore and the most probable pore diameter. The chloride diffusion coefficient was determined by the pore structure and the chemical properties of pore solution.
Key words:  bagasse ash    slag    sea-sand    chloride diffusion coefficient    pore structure
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TU528  
通讯作者:  * 刘剑辉,广西大学土木建筑工程学院副教授、博士研究生导师。主要研究方向为:(1)超高性能混凝土的收缩与控制;(2)二氧化碳养护水泥基材料;(3)固体废弃物的处理与运用。主持国家、省部级课题4项,参与国家重点研发计划、国家自然科学基金面上项目等科研项目3项;发表学术论文40余篇(其中SCI论文25篇)。liujianhui@gxu.edu.cn
史才军,国家第二批“千人计划”特聘专家、湖南省特聘专家、亚洲混凝土联合会主席、湖南大学985工程创新平台首席科学家、特聘教授、博士研究生导师。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文540余篇。出版英文著作8部,中文著作5部,合编国际会议英文论文集11本。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001年、2007年和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士。cshi@hnu.edu.cn   
作者简介:  莫耀鸿,2020年6月毕业于湖南工业大学,获得工学学士学位。现为广西大学土木建筑工程学院硕士研究生,在史才军教授的指导下进行研究。目前主要研究领域为胶凝材料组成在海砂水泥基中的应用。
引用本文:    
莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
MO Yaohong, LIU Jianhui, LIU Leping, CHEN Zheng, JIANG Zenggui, SHI Caijun. Study on Compressive Strength and Chloride Penetration Resistance of Cement-Bagasse Ash-Slag Sea-sand Mortar. Materials Reports, 2024, 38(14): 23030005-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030005  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030005
1 Pan D, Yaseen S A, Chen K Y, et al. Journal of Building Engineering, 2021, 42, 103006.
2 Guo M H, Hu B, Xing F, et al. Construction and Building Materials, 2020, 234, 117339.
3 Geng J Z, Zhu D J, Guo S C, et al. Materials Reports, 2022, 36(3), 152 (in Chinese).
耿健智, 朱德举, 郭帅成, 等. 材料导报, 2022, 36(3), 152.
4 Dhondy T, Remennikov A, Neaz-Sheikh M. Journal of Materials in Civil Engineering, 2020, 32(12), 04020392.
5 Liu J L, Wang Y. Journal of Cleaner Production, 2022, 330, 129767.
6 Ben-Fraj A, Bonnet S, Leklou N, et al. Construction and Building Materials, 2019, 225, 485.
7 Farahani A, Taghaddos H, Shekarchi M. Cement and Concrete Compo-sites, 2015, 59, 10.
8 Fairbairn E M, Americano B B, Cordeiro G C, et al. Journal of Environmental Management, 2010, 91(9), 1864.
9 Rukzon S, Chindaprasirt P. Materials & Design, 2012, 34, 45.
10 Bahurudeen A, Kanraj D, Gokul-Dev V, et al. Cement and Concrete Composites, 2015, 59, 77.
11 Franco-Luján V A, Maldonado-García M A, Mendoza-Rangel J M, et al. Construction and Building Materials, 2019, 198, 608.
12 Klathae T, Tran T N H, Men S, et al. Construction and Building Mate-rials, 2021, 311, 125326.
13 Bahurudeen A, Santhanam M. Cement and Concrete Composites, 2015, 56, 32.
14 Wang T, Ishida T, Gu R. Construction and Building Materials, 2020, 243, 118227.
15 Megat-Johari M A, Brooks J J, Kabir S, et al. Construction and Building Materials, 2011, 25(5), 2639.
16 Arenas-Piedrahita J C, Montes-García P, Mendoza-Rangel J M, et al. Construction and Building Materials, 2016, 105, 69.
17 Amin M N, Ashraf M, Kumar R, et al. Frontiers in Materials, 2020, 7, 65.
18 Ting M Z Y, Wong K S, Rahman M E, et al. Construction and Building Materials, 2020, 254, 119195.
19 Duan P, Shui Z H,Chen W, et al. Journal of Materials Research and Technology, 2013, 2(1), 52.
20 Wu Z M, Shi C J, Khayat K H, et al. Cement and Concrete Composites, 2016, 70, 24.
21 Shi Z, Geiker M R, Lothenbach B, et al. Cement and Concrete Compo-sites, 2017, 78, 73.
22 Li H, Farzadnia N, Shi C. Construction and Building Materials, 2018, 185, 508.
23 Liu J, An R, Jiang Z L, et al. Construction and Building Materials, 2022, 321, 126333.
24 Vafaei D, Hassanli R, Ma X, et al. Construction and Building Materials, 2021, 270, 121436.
25 Barnett S J, Soutsos M N, Millard S G, et al. Cement and Concrete Research, 2006, 36(3), 434.
26 Xue C Z, Shen A Q, Guo Y C. Materials Reports, 2019, 33(8), 1348 (in Chinese).
薛翠真, 申爱琴, 郭寅川. 材料导报, 2019, 33(8), 1348.
27 Ren J G, Luo X X, Bai R Q, et al. Journal of Building Engineering, 2022, 46, 103784.
28 Zhu W H, Yin Y F, Jiang L H, et al. Journal of Building Materials, 2004(1), 14 (in Chinese).
朱卫华, 印友法, 蒋林华, 等. 建筑材料学报, 2004(1), 14.
29 Ramezanianpour A A, Pilvar A, Mahdikhani M, et al. Construction and Building Materials, 2011, 25(5), 2472.
30 Ram K, Serdar M, Londono-Zuluaga D, et al. Case Studies in Construction Materials, 2022, 17, e01242.
31 Homayoonmehr R, Rahai A, Akbar-Ramezanianpour A. Construction and Building Materials, 2022, 357, 129351.
32 Dhandapani Y, Santhanam M. Cement and Concrete Composites, 2017, 84, 36.
33 Chidiac S E, Shafikhani M. Cement and Concrete Composites, 2020, 113, 103707.
34 Sui S Y, Georget F, Maraghechi H, et al. Cement and Concrete Research, 2019, 124, 105783.
35 Ye G. Cement and Concrete Research, 2005, 35(1), 167.
36 Neithalath N, Jain J. Cement and Concrete Research, 2010, 40(7), 1041.
37 Wang R P, He F Q, Chen C P, et al. Construction and Building Mate-rials, 2021, 297, 123773.
38 Chen R X, Mu S, Liu J P. Construction and Building Materials, 2022, 341, 127741.
[1] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[2] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[3] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[4] 朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
[5] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[6] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[7] 安树好, 刘娟红, 张月月, 李康. 矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制[J]. 材料导报, 2023, 37(22): 22080235-10.
[8] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[9] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[10] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[11] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[12] 王鹏刚, 付华, 郭腾飞, 田砾, 赵铁军. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24): 20120185-8.
[13] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[14] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[15] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed