Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22080235-10    https://doi.org/10.11896/cldb.22080235
  无机非金属及其复合材料 |
矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制
安树好1, 刘娟红1,2,3,*, 张月月1, 李康4,5
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 北京科技大学城镇化与城市安全研究院,北京 100083
4 中国铁道科学研究院集团有限公司高速铁路轨道技术国家重点实验室,北京 100081
5 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
Synergistic Hydration Mechanism of Slag Powder and Ultrafine Iron Tailings Powder in Non-clinker Consolidated Body
AN Shuhao1, LIU Juanhong1,2,3,*, ZHANG Yueyue1, LI Kang4,5
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, Beijing 100083, China
4 State Key Laboratory of High-speed Railway Track Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
5 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 14355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细铁尾矿粉表面非晶态铝硅酸盐矿物成分具有水化活性,能够形成较高强度的无熟料固结体,但存在早期水化速率快、后期强度低的缺点。本工作考察了掺入矿渣粉对超细铁尾矿基无熟料固结体微观结构及强度的影响,分析了硬化浆体中水化产物的形貌、种类及含量的差异,并研究了二者在无熟料固结过程中的协同水化硬化机制。结果表明:磨细铁尾矿粉和矿渣粉质量比在1∶1时无熟料固结体28 d可以获得78 MPa以上的强度;XRD、TG-DSC分析结果及SEM微观形貌显示铁尾矿粉和矿渣粉的水化产物一致,均为铝掺杂水化硅酸钙(C-(A)-S-H)和钙矾石(AFt);固结体中AFt的生成量早期与矿渣粉的比例呈正相关关系,后期受体系中SO3含量的控制;固结体的线性膨胀率与AFt含量呈正相关关系;矿渣粉和铁尾矿粉复配可以明显改善试样硬化体的孔结构,二者比例在1∶1时孔径分布最优。本研究证实了矿渣粉与超细铁尾矿粉在无熟料固结过程中有明显的水化协同效应,超细铁尾矿粉表面非晶态成分的早期水化产物对硬化浆体早期起到固结和填充效应,矿渣粉的持续水化补充了后期新的水化产物,二者在水化过程中的协同机制增加了体系中水化产物的生成量,改善了浆体的孔结构,提高了密实度,使固结体获得较高的力学性能和体积稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安树好
刘娟红
张月月
李康
关键词:  超细铁尾矿粉  矿渣粉  无熟料固结体  非晶态成分  协同水化机制    
Abstract: The amorphous aluminosilicate mineral composition on the surface of ultrafine iron tailing powder has hydration activity and can form a high strength clinker free consolidated body. However, it has the disadvantages of fast hydration rate in the early stage and low strength in the later stage. In this work, the effect of slag powder on the microstructure and strength of ultra-fine iron tailings based non-clinker consolidated body was investigated, the difference of the morphology, type and content of hydration products in hardened paste was analyzed, and the synergistic hydration hardening mechanism of the two mixtures in the process of non-clinker consolidation was studied. The results showed that when the ratio of ground iron tailings powder to slag powder was 1∶1, the strength above 78 MPa could be obtained without clinker consolidation in 28 days; XRD, TG-DSC analysis results and SEM micro morphology showed that the hydration products of iron tailings powder and slag powder were the same, both of which were aluminum-substituted calcium silicate hydrate (C-(A)-S-H) and Ettringite (AFt); the amount of AFt in the consolidated body was positively related to the proportion of slag powder in the early stage and controlled by the content of SO3 in the system in the later stage; the linear expansion rate of consolidated body was positively correlated with AFt content; the pore structure of hardened samples could be improved obviously by adding slag powder and iron tailing powder, and the pore size distribution was optimal when the ratio of slag powder to iron tailing powder was 1∶1. This study confirms that slag powder and superfine iron tailing powder have obvious hydration synergistic effect in the process of non-clinker consolidation. The early hydration products of the amorphous components on the surface of superfine iron tailing powder play a consolidation and filling effect on the hardened slurry in the early stage. Their synergistic effect in the hydration process increases the amount of hydration products in the system, improving the pore structure of the slurry. The compactness is improved, and the conso-lidated body can obtain high mechanical properties and volume stability.
Key words:  ultrafine iron tailings powder    slag powder    clinker free consolidated body    amorphous composition    synergistic hydration mechanism
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51834001)
通讯作者:  * 刘娟红,北京科技大学土木与资源工程学院教授、博士研究生导师。1989年毕业于武汉工业大学硅酸盐工程专业,获学士学位,1998年获武汉工业大学建筑材料硕士学位,2008年获中国矿业大学(北京)矿物材料工程专业博士学位。长期从事现代混凝土技术、固体废弃物在水泥基材料中的高效利用等方面的研究应用工作。主持国家自然科学重点基金、面上基金,承担国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖2项、二等奖1项、三等奖4项。获国家发明专利20余项。在公开刊物上发表文章160余篇,被SCI、EI收录60余篇。出版学术专著《绿色高性能混凝土技术与工程应用》《活性粉末混凝土》《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。其主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制,广东省、浙江省道路桥梁工程;新疆、宁夏等自治区重点工程,大唐国际发电有限公司粉煤灰品质提升等方面。juanhong1966@hotmail.com   
作者简介:  安树好,2003年3月于河北理工大学获得工学硕士学位。现为北京科技大学土木与资源工程学院博士研究生,在刘娟红教授的指导下进行研究,专业方向为土木工程,目前主要从事铁尾矿资源化高效利用技术及机理研究。
引用本文:    
安树好, 刘娟红, 张月月, 李康. 矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制[J]. 材料导报, 2023, 37(22): 22080235-10.
AN Shuhao, LIU Juanhong, ZHANG Yueyue, LI Kang. Synergistic Hydration Mechanism of Slag Powder and Ultrafine Iron Tailings Powder in Non-clinker Consolidated Body. Materials Reports, 2023, 37(22): 22080235-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080235  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22080235
1 Wang H J, Wang Y J, Li W C, et al. National report on conservation and comprehensive utilization of mineral resources(2019), Geological Publis-hing House, China, 2020, pp. 19 (in Chinese).
王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019), 地质出版社, 2020, pp. 19.
2 Gu X W, Ai Y Y, Zhao Y Q, et al. The Chinese Journal of Nonferrous Metals,DOI:10.11817/j.ysxb.1004.0609.2021-42756.
顾晓薇, 艾莹莹, 赵昀奇, 等. 中国有色金属学报, DOI:10.11817/j.ysxb.1004.0609.2021-42756.
3 Chen S C, Gao M Y, Lin W T, et al. Construction and Building Materials, 2022, 329, 127150.
4 Young G, Yang M. Construction and Building Materials, 2019, 197, 152.
5 Lu J T, Kong L J, Fan Z R, et al. Journal of Building Materials, 2022, 25(6), 585 (in Chinese).
卢佳涛, 孔丽娟, 樊子瑞, 等. 建筑材料学报, 2022, 25(6), 585.
6 Cheng Y H, Huang F Li W C, et al. Construction and Building Materials, 2016, 118, 164.
7 Peng Y J, Liu Z M, Liu X X, et al. Construction and Building Materials, 2022, 322, 126515.
8 Ruan Z E, Wu A X, Wang Y M, et al. Chinese Journal of Engineering, 2022, 44(4), 496 (in Chinese).
阮竹恩, 吴爱祥, 王贻明, 等. 工程科学学报, 2022, 44(4), 496
9 Cheng H Y, Wu A X, Wu S C, et al. Chinese Journal of Engineering, 2022, 44(1), 11 (in Chinese).
程海勇, 吴爱祥, 吴顺川, 等. 工程科学学报, 2022, 44 (1), 11.
10 Zheng Y C, Ni W, Xu L, et al. Journal of University of Science and Technology Beijing, 2010, 32(4), 504 (in Chinese)
郑永超, 倪文, 徐丽, 等. 北京科技大学学报, 2010, 32(4), 504.
11 Piao C A, Wang D M, Zhang L R, et al. Journal of Basic Science and Engineering, 2016, 24(6), 1100 (in Chinese).
朴春爱, 王栋民, 张力冉, 等. 应用基础与工程科学学报, 2016, 24(6), 1100.
12 Wang Y, Zhu Y M, Xie R Q, et al. Metal Mine, 2020, 528(6), 81 (in Chinese).
王燕, 朱一民, 谢瑞琦, 等. 金属矿山, 2020, 528(6), 81.
13 Lu X C, Yin L, Zhao L Z, et al. Journal of the Chinese Ceramic Society, 2003, 31(1), 60 (in Chinese).
陆现彩, 尹琳, 赵连泽, 等. 硅酸盐学报, 2003, 31(1), 60.
14 Yang N R. Non-tradition cementitious materials chemistry, Wuhan University of Technology Press, 2018, pp. 179 (in Chinese).
杨南如. 非传统胶凝材料化学, 武汉理工大学出版社, 2018, pp. 179.
15 An S H, Liu J H, Zhang Y Y, et al. Journal of Building Materials, 2023, 26(2), 172 (in Chinese).
安树好, 刘娟红, 张月月, 等. 建筑材料学报, 2023, 26(2), 172.
16 Liu J H, An S H, Zhang Y Y, et al. Chinese Journal of Engineering, 2022, 44(12), 1999 (in Chinese).
刘娟红, 安树好, 吴爱祥, 等. 工程科学学报, 2022, 44(12), 1999.
17 Wang Y L, Yao Y H, Cui S P, et al. Materials Reports, 2018, 32(22), 3989.
王亚丽, 姚羽涵, 崔素萍, 等. 材料导报, 2018, 32(22), 3989.
18 Han F H, Wang D M, Yan P Y. Journal of the Chinese Ceramic Society, 2014, 42(5), 613 (in Chinese).
韩方晖, 王栋民, 阎培渝. 硅酸盐学报, 2014, 42(5), 613.
19 Zhu X H, Li Q, Kang X J, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2529 (in Chinese).
朱效宏, 李青, 康晓娟, 等. 硅酸盐学报, 2021, 49(11), 2529.
20 Chen M Y, Zhou S H, Li B X, et al. Bulletin of The Chinese Ceramic Society, 2016, 35(4), 1265 (in Chinese).
陈梦义, 周绍豪, 李北星, 等. 硅酸盐通报, 2016, 35(4), 1265.
21 Shi T, Yao Y M. Advances in Cement Research, 2015, 27(9), 497.
22 Liang W Q. Engineering Journal of Wuhan University, 1994, 27(5), 492 (in Chinese).
梁文泉. 武汉大学学报: 工学版, 1994, 27(5), 492.
23 Niu Q L, Feng N Q, Yang J. Journal of the Chinese Ceramic Society, 2004, 32(1), 102 (in Chinese).
牛全林, 冯乃谦, 杨静. 硅酸盐学报, 2004, 32(1), 102.
24 Gao S, Li Q Y, Li N, et al. Journal of Building Structures, 2021, 42(S1), 466 (in Chinese).
高嵩, 李秋义, 李楠, 等. 建筑结构学报, 2021, 42(S1), 466.
25 Wu P, Lyu X J, Wang J X, et al. Journal of China University of Mining & Technology, 2016, 45(3), 615 (in Chinese).
吴蓬, 吕宪俊, 王俊祥, 等. 中国矿业大学学报, 2016, 45(3), 615.
26 Wang L, Song J W, Liu S H. Bulletin of the Chinese Ceramic Society, 2017, 36(7), 2197 (in Chinese).
王露, 宋军伟, 刘数华. 硅酸盐通报, 2017, 36(7), 2197.
27 Wang Z, Wang Q, Wang D M. Journal of Chinese Electron Microscopy Society, 2014, 33(6), 521 (in Chinese).
王喆, 王强, 王栋民. 电子显微学报, 2014, 33(6), 521.
28 Zhang C, Li K F, Wang J J. Materials Reports, 2023, 37(2), 54 (in Chinese).
张弛, 李克非, 王俊杰. 材料导报, 2023, 37(2), 54.
29 Pan X Y, Zhang G X, Zhang Y Q, et al. Journal of Building Materials, 2017, 20(2), 255 (in Chinese).
潘晓燕, 张广兴, 张晏清, 等. 建筑材料学报, 2017, 20(2), 255.
30 Song X L, Huang X H. Fundamentals of Inorganic Materials Science, Chemical Industry Press, 2020, pp. 398 (in Chinese).
宋晓岚, 黄学辉. 无机材料科学基础, 化学工业出版社, 2020, pp. 398.
31 Li H Y, Chen J Y, Yang L Y, et al. Journal of the Chinese Ceramic So-ciety, 2022, 50(8), 2182 (in Chinese).
李海艳, 陈继友, 杨龙跃, 等. 硅酸盐学报, 2022, 50(8), 2182.
32 Qi S, Tian Q, Zhang M et al. Bulletin of the Chinese Ceramic Society, 2022, 41(7), 2223 (in Chinese).
祁帅, 田青, 张苗, 等. 硅酸盐通报, 2022, 41(7), 2223.
33 Thomas J J, Jennings H M, Chen J J. The Journal of Physical Chemistry C, 2009, 113(11), 4327.
34 Land G, Stephan D. Cement & Concrete Composites, 2015, 57, 64.
35 Wu Z W, Lian H Z. High performance concrete, China Railway Publis-hing House, 1999, pp. 24, 263 (in Chinese)
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999, pp. 24, 263.
36 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
37 Ye Q, Zhang Z N, Chen R S, et al. Journal of the Chinese Ceramic Society, 2003, 31(5), 517 (in Chinese).
叶青, 张泽南, 陈荣升, 等. 硅酸盐学报, 2003, 31(5), 517.
38 Wang R, Liu K, Wan Q, et al. Journal of Building Materials. 2022, 25(8), 836 (in Chinese).
王茹, 刘科, 万芹, 等. 建筑材料学报, 2022, 25(8), 836.
39 Zeng X H, Sui T B, Li Z J. Journal of the Chinese Ceramic Society, 2009, 37(4), 601 (in Chinese).
曾晓辉, 隋同波, 李宗津. 硅酸盐学报, 2009, 37(4), 601.
40 Chen W, Brouwers H J H, Shui Z H. Journal of Wuhan University of Technology, 2010, 32(11), 1 (in Chinese).
陈伟, Brouwers H J H, 水中和. 武汉理工大学学报, 2010, 32(11), 1.
41 Bizzozero J, Gosselin C, Scrivener K L. Cem Concr Res, 2014, 56(2), 190.
42 Han J G, Yan P Y, Hou W H. Journal of the Chinese Ceramic Society, 2016, 44(11), 1543 (in Chinese).
韩建国, 阎培渝, 侯维红. 硅酸盐学报, 2016, 44(11), 1543.
43 Cui S P, Zheng Y, Wang Z M, et al. Journal of Beijing University of Technology, 2018, 44(4), 602 (in Chinese).
崔素萍, 郑焱, 王子明, 等. 北京工业大学学报, 2018, 44(4), 602.
44 Cai A L, Huang Y X, Yan S, et al. Journal of Materials Science & Engineering, 2005, 23(4), 574 (in Chinese).
蔡安兰, 黄颖星, 严生, 等. 材料科学与工程学报, 2005(4), 574.
45 Juenger M, Jennings H M. Cement & Concrete Research, 2002, 32(2), 289.
46 Wang J, Cheng Y, Yuan L, et al. Construction and Building Materials, 2020, 247, 118529.
[1] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[2] 聂若楠, 王旺民, 曹丽娟, 徐慧敏, 储刚, 秦文秀, 王振, 司友斌. 关于生物炭的四重功能化改性及其吸附环境污染物机制的综述[J]. 材料导报, 2023, 37(22): 22050019-9.
[3] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[4] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[5] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[6] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[7] 金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
[8] 张建伟, 佘希林, 刘嘉麒, 张蕾. 连续玄武岩纤维新材料的制备、性能及应用[J]. 材料导报, 2023, 37(11): 22010106-7.
[9] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[10] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[11] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[12] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[13] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[14] 武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
[15] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed