Synergistic Hydration Mechanism of Slag Powder and Ultrafine Iron Tailings Powder in Non-clinker Consolidated Body
AN Shuhao1, LIU Juanhong1,2,3,*, ZHANG Yueyue1, LI Kang4,5
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China 3 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, Beijing 100083, China 4 State Key Laboratory of High-speed Railway Track Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China 5 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
Abstract: The amorphous aluminosilicate mineral composition on the surface of ultrafine iron tailing powder has hydration activity and can form a high strength clinker free consolidated body. However, it has the disadvantages of fast hydration rate in the early stage and low strength in the later stage. In this work, the effect of slag powder on the microstructure and strength of ultra-fine iron tailings based non-clinker consolidated body was investigated, the difference of the morphology, type and content of hydration products in hardened paste was analyzed, and the synergistic hydration hardening mechanism of the two mixtures in the process of non-clinker consolidation was studied. The results showed that when the ratio of ground iron tailings powder to slag powder was 1∶1, the strength above 78 MPa could be obtained without clinker consolidation in 28 days; XRD, TG-DSC analysis results and SEM micro morphology showed that the hydration products of iron tailings powder and slag powder were the same, both of which were aluminum-substituted calcium silicate hydrate (C-(A)-S-H) and Ettringite (AFt); the amount of AFt in the consolidated body was positively related to the proportion of slag powder in the early stage and controlled by the content of SO3 in the system in the later stage; the linear expansion rate of consolidated body was positively correlated with AFt content; the pore structure of hardened samples could be improved obviously by adding slag powder and iron tailing powder, and the pore size distribution was optimal when the ratio of slag powder to iron tailing powder was 1∶1. This study confirms that slag powder and superfine iron tailing powder have obvious hydration synergistic effect in the process of non-clinker consolidation. The early hydration products of the amorphous components on the surface of superfine iron tailing powder play a consolidation and filling effect on the hardened slurry in the early stage. Their synergistic effect in the hydration process increases the amount of hydration products in the system, improving the pore structure of the slurry. The compactness is improved, and the conso-lidated body can obtain high mechanical properties and volume stability.
1 Wang H J, Wang Y J, Li W C, et al. National report on conservation and comprehensive utilization of mineral resources(2019), Geological Publis-hing House, China, 2020, pp. 19 (in Chinese). 王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019), 地质出版社, 2020, pp. 19. 2 Gu X W, Ai Y Y, Zhao Y Q, et al. The Chinese Journal of Nonferrous Metals,DOI:10.11817/j.ysxb.1004.0609.2021-42756. 顾晓薇, 艾莹莹, 赵昀奇, 等. 中国有色金属学报, DOI:10.11817/j.ysxb.1004.0609.2021-42756. 3 Chen S C, Gao M Y, Lin W T, et al. Construction and Building Materials, 2022, 329, 127150. 4 Young G, Yang M. Construction and Building Materials, 2019, 197, 152. 5 Lu J T, Kong L J, Fan Z R, et al. Journal of Building Materials, 2022, 25(6), 585 (in Chinese). 卢佳涛, 孔丽娟, 樊子瑞, 等. 建筑材料学报, 2022, 25(6), 585. 6 Cheng Y H, Huang F Li W C, et al. Construction and Building Materials, 2016, 118, 164. 7 Peng Y J, Liu Z M, Liu X X, et al. Construction and Building Materials, 2022, 322, 126515. 8 Ruan Z E, Wu A X, Wang Y M, et al. Chinese Journal of Engineering, 2022, 44(4), 496 (in Chinese). 阮竹恩, 吴爱祥, 王贻明, 等. 工程科学学报, 2022, 44(4), 496 9 Cheng H Y, Wu A X, Wu S C, et al. Chinese Journal of Engineering, 2022, 44(1), 11 (in Chinese). 程海勇, 吴爱祥, 吴顺川, 等. 工程科学学报, 2022, 44 (1), 11. 10 Zheng Y C, Ni W, Xu L, et al. Journal of University of Science and Technology Beijing, 2010, 32(4), 504 (in Chinese) 郑永超, 倪文, 徐丽, 等. 北京科技大学学报, 2010, 32(4), 504. 11 Piao C A, Wang D M, Zhang L R, et al. Journal of Basic Science and Engineering, 2016, 24(6), 1100 (in Chinese). 朴春爱, 王栋民, 张力冉, 等. 应用基础与工程科学学报, 2016, 24(6), 1100. 12 Wang Y, Zhu Y M, Xie R Q, et al. Metal Mine, 2020, 528(6), 81 (in Chinese). 王燕, 朱一民, 谢瑞琦, 等. 金属矿山, 2020, 528(6), 81. 13 Lu X C, Yin L, Zhao L Z, et al. Journal of the Chinese Ceramic Society, 2003, 31(1), 60 (in Chinese). 陆现彩, 尹琳, 赵连泽, 等. 硅酸盐学报, 2003, 31(1), 60. 14 Yang N R. Non-tradition cementitious materials chemistry, Wuhan University of Technology Press, 2018, pp. 179 (in Chinese). 杨南如. 非传统胶凝材料化学, 武汉理工大学出版社, 2018, pp. 179. 15 An S H, Liu J H, Zhang Y Y, et al. Journal of Building Materials, 2023, 26(2), 172 (in Chinese). 安树好, 刘娟红, 张月月, 等. 建筑材料学报, 2023, 26(2), 172. 16 Liu J H, An S H, Zhang Y Y, et al. Chinese Journal of Engineering, 2022, 44(12), 1999 (in Chinese). 刘娟红, 安树好, 吴爱祥, 等. 工程科学学报, 2022, 44(12), 1999. 17 Wang Y L, Yao Y H, Cui S P, et al. Materials Reports, 2018, 32(22), 3989. 王亚丽, 姚羽涵, 崔素萍, 等. 材料导报, 2018, 32(22), 3989. 18 Han F H, Wang D M, Yan P Y. Journal of the Chinese Ceramic Society, 2014, 42(5), 613 (in Chinese). 韩方晖, 王栋民, 阎培渝. 硅酸盐学报, 2014, 42(5), 613. 19 Zhu X H, Li Q, Kang X J, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2529 (in Chinese). 朱效宏, 李青, 康晓娟, 等. 硅酸盐学报, 2021, 49(11), 2529. 20 Chen M Y, Zhou S H, Li B X, et al. Bulletin of The Chinese Ceramic Society, 2016, 35(4), 1265 (in Chinese). 陈梦义, 周绍豪, 李北星, 等. 硅酸盐通报, 2016, 35(4), 1265. 21 Shi T, Yao Y M. Advances in Cement Research, 2015, 27(9), 497. 22 Liang W Q. Engineering Journal of Wuhan University, 1994, 27(5), 492 (in Chinese). 梁文泉. 武汉大学学报: 工学版, 1994, 27(5), 492. 23 Niu Q L, Feng N Q, Yang J. Journal of the Chinese Ceramic Society, 2004, 32(1), 102 (in Chinese). 牛全林, 冯乃谦, 杨静. 硅酸盐学报, 2004, 32(1), 102. 24 Gao S, Li Q Y, Li N, et al. Journal of Building Structures, 2021, 42(S1), 466 (in Chinese). 高嵩, 李秋义, 李楠, 等. 建筑结构学报, 2021, 42(S1), 466. 25 Wu P, Lyu X J, Wang J X, et al. Journal of China University of Mining & Technology, 2016, 45(3), 615 (in Chinese). 吴蓬, 吕宪俊, 王俊祥, 等. 中国矿业大学学报, 2016, 45(3), 615. 26 Wang L, Song J W, Liu S H. Bulletin of the Chinese Ceramic Society, 2017, 36(7), 2197 (in Chinese). 王露, 宋军伟, 刘数华. 硅酸盐通报, 2017, 36(7), 2197. 27 Wang Z, Wang Q, Wang D M. Journal of Chinese Electron Microscopy Society, 2014, 33(6), 521 (in Chinese). 王喆, 王强, 王栋民. 电子显微学报, 2014, 33(6), 521. 28 Zhang C, Li K F, Wang J J. Materials Reports, 2023, 37(2), 54 (in Chinese). 张弛, 李克非, 王俊杰. 材料导报, 2023, 37(2), 54. 29 Pan X Y, Zhang G X, Zhang Y Q, et al. Journal of Building Materials, 2017, 20(2), 255 (in Chinese). 潘晓燕, 张广兴, 张晏清, 等. 建筑材料学报, 2017, 20(2), 255. 30 Song X L, Huang X H. Fundamentals of Inorganic Materials Science, Chemical Industry Press, 2020, pp. 398 (in Chinese). 宋晓岚, 黄学辉. 无机材料科学基础, 化学工业出版社, 2020, pp. 398. 31 Li H Y, Chen J Y, Yang L Y, et al. Journal of the Chinese Ceramic So-ciety, 2022, 50(8), 2182 (in Chinese). 李海艳, 陈继友, 杨龙跃, 等. 硅酸盐学报, 2022, 50(8), 2182. 32 Qi S, Tian Q, Zhang M et al. Bulletin of the Chinese Ceramic Society, 2022, 41(7), 2223 (in Chinese). 祁帅, 田青, 张苗, 等. 硅酸盐通报, 2022, 41(7), 2223. 33 Thomas J J, Jennings H M, Chen J J. The Journal of Physical Chemistry C, 2009, 113(11), 4327. 34 Land G, Stephan D. Cement & Concrete Composites, 2015, 57, 64. 35 Wu Z W, Lian H Z. High performance concrete, China Railway Publis-hing House, 1999, pp. 24, 263 (in Chinese) 吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999, pp. 24, 263. 36 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese). 钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569. 37 Ye Q, Zhang Z N, Chen R S, et al. Journal of the Chinese Ceramic Society, 2003, 31(5), 517 (in Chinese). 叶青, 张泽南, 陈荣升, 等. 硅酸盐学报, 2003, 31(5), 517. 38 Wang R, Liu K, Wan Q, et al. Journal of Building Materials. 2022, 25(8), 836 (in Chinese). 王茹, 刘科, 万芹, 等. 建筑材料学报, 2022, 25(8), 836. 39 Zeng X H, Sui T B, Li Z J. Journal of the Chinese Ceramic Society, 2009, 37(4), 601 (in Chinese). 曾晓辉, 隋同波, 李宗津. 硅酸盐学报, 2009, 37(4), 601. 40 Chen W, Brouwers H J H, Shui Z H. Journal of Wuhan University of Technology, 2010, 32(11), 1 (in Chinese). 陈伟, Brouwers H J H, 水中和. 武汉理工大学学报, 2010, 32(11), 1. 41 Bizzozero J, Gosselin C, Scrivener K L. Cem Concr Res, 2014, 56(2), 190. 42 Han J G, Yan P Y, Hou W H. Journal of the Chinese Ceramic Society, 2016, 44(11), 1543 (in Chinese). 韩建国, 阎培渝, 侯维红. 硅酸盐学报, 2016, 44(11), 1543. 43 Cui S P, Zheng Y, Wang Z M, et al. Journal of Beijing University of Technology, 2018, 44(4), 602 (in Chinese). 崔素萍, 郑焱, 王子明, 等. 北京工业大学学报, 2018, 44(4), 602. 44 Cai A L, Huang Y X, Yan S, et al. Journal of Materials Science & Engineering, 2005, 23(4), 574 (in Chinese). 蔡安兰, 黄颖星, 严生, 等. 材料科学与工程学报, 2005(4), 574. 45 Juenger M, Jennings H M. Cement & Concrete Research, 2002, 32(2), 289. 46 Wang J, Cheng Y, Yuan L, et al. Construction and Building Materials, 2020, 247, 118529.