Hydrothermal Preparation of Gradient Porous Antireflection Film on Glass Surface and the Effect of Na2HPO4 Added into Water Etching Agent on Film Structure
SUN Huihui1, ZHOU Ziji1, CAO Wen1, WANG Qun1, ZHOU Zhonghua1,2,*, HUANG Yue1,*
1 College of Materials, Xiamen University, Xiamen 361005,Fujian, China 2 Fujian Key Laboratory of Advanced Materials, Xiamen 361005, Fujian, China
Abstract: Gradient porous antireflection film on glass surface, as characterized by the ultra-low reflectance and high increasing transmittance of visible light, has a wide range of application prospects in photovoltaic, electronic display, automotive and other fields. Glass reacts strongly with water during hydrothermal process, resulting in difficulty forming gradient porous structural film on the surface. One of the important technical problems in the preparation of gradient porous antireflection film by hydrothermal method is how to control the etching solution to slow down the etching reaction of glass, eventually forming the surface film with gradient porous structure. In this work, gradient porous antireflection film on glass surface has been successfully prepared by a hydrothermal method, using water and Na2HPO4 solution as etching agents, and three commercial sodalime glasses as substrates. The etched film's microscopic morphology, element distribution, infrared spectroscopy and the glass's optical properties were analyzed. The etched film's refractive index and reflectance were simulated by Macleod and TFCalc software, respectively. The micron concave and convax surface was obtained when water etching agent was used. However, gradient porous antireflection film has been prepared when Na2HPO4 was added into water etching agent. The added Na2HPO4 contributes to slowing down etching reaction and constructing porous etched film. The best addition volume of Na2HPO4 demonstrates a reverse relationship with the glass's alkaline-earth metal content. The lowest reflectance R380—780 nm is 0.88%, and the highest increasing transmittance ΔT380—780 nm reaches 7.39%.
孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
SUN Huihui, ZHOU Ziji, CAO Wen, WANG Qun, ZHOU Zhonghua, HUANG Yue. Hydrothermal Preparation of Gradient Porous Antireflection Film on Glass Surface and the Effect of Na2HPO4 Added into Water Etching Agent on Film Structure. Materials Reports, 2023, 37(22): 22060210-7.
1 Hiller J, Mendelsohn J D, et al. Nature Materials, 2002, 1(1), 59. 2 Lin P H, Lin Y T, et al. Displays, 2008, 29(1), 25. 3 Niu W H. Research on the gradient-index broadband antireflection performance of solar glass. Master's Thesis, Shandong Jianzhu University, China, 2014(in Chinese). 牛文贺. 太阳能玻璃梯度折射率宽带减反射性能研究. 硕士学位论文, 山东建筑大学, 2014. 4 Gong D, Lee Y J, Ju M, et al. Japanese Journal of Applied Physics, DOI: 10.1143/JJAP.50.08KE01. 5 Lim K P, Ng D K T, Wang Q. Journal of Physics D: Applied Physics, DOI:10. 1088/0022-3727/49/8/085302. 6 Jia G Y, Ji Z H, Wang H N, et al. Thin Solid Films, DOI: 10. 1016/j. tsf. 2017. 09. 038. 7 Chen G, Hu D Q, Li C, et al. Journal of Materials Science, 2018, 22(53), 15588. 8 Wei Y S, Xu S H, Yuan L G, et al. Materials Research Express, DOI: 10. 1088/2053-1591/abb499. 9 Liao B H, Lee C C. Optics Express, 2011, 19(8), 7507. 10 Ma C, Wang L S, Fan X W, et al. Applied Surface Science, DOI: 10. 1016/J. APSUSC. 2021. 149924. 11 Kumar A, Chaliyawala H, Siddhanta S, et al. Solar Energy Materials & Solar Cells, DOI: 10. 1016/j. solmat. 2015. 11. 014. 12 Du X, He J. Journal of Colloid and Interface Science, 2012, 1(381), 189. 13 Xiong J, Das S N, Kar J P, et al. Journal of Materials Chemistry, 2010, 20(45), 10246. 14 Zheng Y Y, Zhou Z H, Cao W, et al. Ceramics International, 2020, 46(11), 18623. 15 ISO 9050-2003: Glass in building-determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors. 2003. 16 Hou H G, Liu G W, Shao H C, et al. Journal of Jiangsu University, 2018, 39(4), 420(in Chinese). 侯海港, 刘桂武, 邵海成, 等. 江苏大学学报, 2018, 39(4), 420. 17 Wu F Q, Li G H, Kong W J. Journal of Applied Optics, 2005, 26(1), 42(in Chinese). 吴福全, 李国华, 孔伟金. 应用光学, 2005, 26(1), 42. 18 Drude P. The theory of optics, Dover Publications Inc, USA, 1925. 19 Cao W, Zhou Z H, Sun H H, et al. Ceramics International, 2022, 48(6), 8012. 20 Sun M X, Zhang C P, Hao Z F, et al. Applied Optics, 2007, 46(17), 3649. 21 Silva A M B, Queiroz C M, Agathopoulos S, et al. Journal of Molecular Structure, 2011, 986(1-3), 16. 22 Lu P, Xia W B, Jiang H, et al. Bullentin of the Chinese Ceramic Society, 2015, 34(3), 878(in Chinese). 鲁鹏, 夏文宝, 姜宏, 等. 硅酸盐通报, 2015, 34(3), 878. 23 Ke Y K, Dong H R. Handbook of analytical chemistry, Chemical Industry Press, China, 2015, pp. 512(in Chinese). 柯以侃, 董慧茹. 分析化学手册, 化学工业出版社, 2015, pp. 512. 24 Cao W, Zhou Z H, Li C Y, et al. Ceramics International, 2021, 47(2), 1807. 25 Neuman G A. Journal of Non-Crystalline Solids, DOI: 10. 1016/S0022-3093(97)00160-9. 26 Liu L Q, Wang X L, Jing M, et al. Advanced Material, 2012, 24(47), 6318. 27 Xi J Q, Schubert M F, Kim J K, et al. Nature Photonics, 2007, 1(3), 176. 28 Wang C Y, Tao Y. Glass surface treatment technology, Chemical Industry Press, China, 2004, pp. 146(in Chinese). 王承遇, 陶瑛. 玻璃表面处理技术, 化学工业出版社, 2004, pp. 146.