Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22060210-7    https://doi.org/10.11896/cldb.22060210
  无机非金属及其复合材料 |
玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响
孙慧慧1, 周子吉1, 曹文1, 王群1, 周忠华1,2,*, 黄悦1,*
1 厦门大学材料学院,福建 厦门 361005
2 福建省先进材料重点实验室, 福建 厦门 361005
Hydrothermal Preparation of Gradient Porous Antireflection Film on Glass Surface and the Effect of Na2HPO4 Added into Water Etching Agent on Film Structure
SUN Huihui1, ZHOU Ziji1, CAO Wen1, WANG Qun1, ZHOU Zhonghua1,2,*, HUANG Yue1,*
1 College of Materials, Xiamen University, Xiamen 361005,Fujian, China
2 Fujian Key Laboratory of Advanced Materials, Xiamen 361005, Fujian, China
下载:  全 文 ( PDF ) ( 26112KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 玻璃表面梯度多孔减反射膜层具有超低反射率、可实现可见光高增透率的特性,在光伏、电子显示、汽车等领域有广阔的应用前景。玻璃在水热过程中与水反应激烈,表面难以形成梯度多孔结构的膜层。如何通过调控刻蚀液,减缓玻璃的刻蚀反应,形成梯度多孔结构的表面膜层,是水热法制备梯度多孔减反射膜层必须克服的技术问题。本工作以商用三种钠钙硅玻璃为基底,分别以水和Na2HPO4水溶液为刻蚀剂,通过水热法成功制备了梯度多孔减反射膜层,分析了刻蚀膜层的微观形貌、元素分布、红外光谱以及玻璃的光学性能。通过Macleod和TFCalc软件进行了膜层的折射率和反射率数值模拟。以水为刻蚀剂,得到微米级凹凸表面。水刻蚀剂添加Na2HPO4,所得膜层为梯度多孔减反射膜层。添加的Na2HPO4起减缓刻蚀反应、构筑多孔刻蚀膜层作用,其最佳添加量与玻璃碱土金属含量呈反向相关关系。反射率R380~780 nm最低达到0.88%,增透ΔT380~780 nm最高达到7.39%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙慧慧
周子吉
曹文
王群
周忠华
黄悦
关键词:  梯度多孔膜层  减反射  水热法  钠钙硅玻璃  磷酸氢二钠    
Abstract: Gradient porous antireflection film on glass surface, as characterized by the ultra-low reflectance and high increasing transmittance of visible light, has a wide range of application prospects in photovoltaic, electronic display, automotive and other fields. Glass reacts strongly with water during hydrothermal process, resulting in difficulty forming gradient porous structural film on the surface. One of the important technical problems in the preparation of gradient porous antireflection film by hydrothermal method is how to control the etching solution to slow down the etching reaction of glass, eventually forming the surface film with gradient porous structure. In this work, gradient porous antireflection film on glass surface has been successfully prepared by a hydrothermal method, using water and Na2HPO4 solution as etching agents, and three commercial sodalime glasses as substrates. The etched film's microscopic morphology, element distribution, infrared spectroscopy and the glass's optical properties were analyzed. The etched film's refractive index and reflectance were simulated by Macleod and TFCalc software, respectively. The micron concave and convax surface was obtained when water etching agent was used. However, gradient porous antireflection film has been prepared when Na2HPO4 was added into water etching agent. The added Na2HPO4 contributes to slowing down etching reaction and constructing porous etched film. The best addition volume of Na2HPO4 demonstrates a reverse relationship with the glass's alkaline-earth metal content. The lowest reflectance R380—780 nm is 0.88%, and the highest increasing transmittance ΔT380—780 nm reaches 7.39%.
Key words:  gradient porous film    antireflection    hydrothermal method    sodalime glass    Na2HPO4
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TB321  
基金资助: 福建省科技重大专项(2014HZ0005);厦门大学科技计划(XDHT2017415A)
通讯作者:  * 周忠华,厦门大学材料学院教授。1998年毕业于日本三重大学,无机材料科学专业博士。1998—2007年任日本东芝陶瓷株式会社开发研究所主任研究员。2007年至今任厦门大学材料学院教授,主要从事玻璃表面功能化、环境净化材料及其应用、纳米材料合成及其应用的研究。已发表SCI、EI等论文30余篇。
黄悦,厦门大学材料学院高级工程师。1990年学士毕业于武汉理工大学材料科学专业。2002年硕士毕业于日本三重大学。2011年至今任厦门大学材料学院高级工程师。主要从事陶瓷材料、玻璃表面功能化、环境净化材料及其应用的研究。已发表SCI、EI等论文30余篇。zzh@xmu.edu.cn;y.huang@xmu.edu.cn   
作者简介:  孙慧慧,2019年6月于盐城师范学院获得工学学士学位。现为厦门大学材料学院硕士研究生。目前主要研究领域为减反射玻璃。
引用本文:    
孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
SUN Huihui, ZHOU Ziji, CAO Wen, WANG Qun, ZHOU Zhonghua, HUANG Yue. Hydrothermal Preparation of Gradient Porous Antireflection Film on Glass Surface and the Effect of Na2HPO4 Added into Water Etching Agent on Film Structure. Materials Reports, 2023, 37(22): 22060210-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060210  或          https://www.mater-rep.com/CN/Y2023/V37/I22/22060210
1 Hiller J, Mendelsohn J D, et al. Nature Materials, 2002, 1(1), 59.
2 Lin P H, Lin Y T, et al. Displays, 2008, 29(1), 25.
3 Niu W H. Research on the gradient-index broadband antireflection performance of solar glass. Master's Thesis, Shandong Jianzhu University, China, 2014(in Chinese).
牛文贺. 太阳能玻璃梯度折射率宽带减反射性能研究. 硕士学位论文, 山东建筑大学, 2014.
4 Gong D, Lee Y J, Ju M, et al. Japanese Journal of Applied Physics, DOI: 10.1143/JJAP.50.08KE01.
5 Lim K P, Ng D K T, Wang Q. Journal of Physics D: Applied Physics, DOI:10. 1088/0022-3727/49/8/085302.
6 Jia G Y, Ji Z H, Wang H N, et al. Thin Solid Films, DOI: 10. 1016/j. tsf. 2017. 09. 038.
7 Chen G, Hu D Q, Li C, et al. Journal of Materials Science, 2018, 22(53), 15588.
8 Wei Y S, Xu S H, Yuan L G, et al. Materials Research Express, DOI: 10. 1088/2053-1591/abb499.
9 Liao B H, Lee C C. Optics Express, 2011, 19(8), 7507.
10 Ma C, Wang L S, Fan X W, et al. Applied Surface Science, DOI: 10. 1016/J. APSUSC. 2021. 149924.
11 Kumar A, Chaliyawala H, Siddhanta S, et al. Solar Energy Materials & Solar Cells, DOI: 10. 1016/j. solmat. 2015. 11. 014.
12 Du X, He J. Journal of Colloid and Interface Science, 2012, 1(381), 189.
13 Xiong J, Das S N, Kar J P, et al. Journal of Materials Chemistry, 2010, 20(45), 10246.
14 Zheng Y Y, Zhou Z H, Cao W, et al. Ceramics International, 2020, 46(11), 18623.
15 ISO 9050-2003: Glass in building-determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors. 2003.
16 Hou H G, Liu G W, Shao H C, et al. Journal of Jiangsu University, 2018, 39(4), 420(in Chinese).
侯海港, 刘桂武, 邵海成, 等. 江苏大学学报, 2018, 39(4), 420.
17 Wu F Q, Li G H, Kong W J. Journal of Applied Optics, 2005, 26(1), 42(in Chinese).
吴福全, 李国华, 孔伟金. 应用光学, 2005, 26(1), 42.
18 Drude P. The theory of optics, Dover Publications Inc, USA, 1925.
19 Cao W, Zhou Z H, Sun H H, et al. Ceramics International, 2022, 48(6), 8012.
20 Sun M X, Zhang C P, Hao Z F, et al. Applied Optics, 2007, 46(17), 3649.
21 Silva A M B, Queiroz C M, Agathopoulos S, et al. Journal of Molecular Structure, 2011, 986(1-3), 16.
22 Lu P, Xia W B, Jiang H, et al. Bullentin of the Chinese Ceramic Society, 2015, 34(3), 878(in Chinese).
鲁鹏, 夏文宝, 姜宏, 等. 硅酸盐通报, 2015, 34(3), 878.
23 Ke Y K, Dong H R. Handbook of analytical chemistry, Chemical Industry Press, China, 2015, pp. 512(in Chinese).
柯以侃, 董慧茹. 分析化学手册, 化学工业出版社, 2015, pp. 512.
24 Cao W, Zhou Z H, Li C Y, et al. Ceramics International, 2021, 47(2), 1807.
25 Neuman G A. Journal of Non-Crystalline Solids, DOI: 10. 1016/S0022-3093(97)00160-9.
26 Liu L Q, Wang X L, Jing M, et al. Advanced Material, 2012, 24(47), 6318.
27 Xi J Q, Schubert M F, Kim J K, et al. Nature Photonics, 2007, 1(3), 176.
28 Wang C Y, Tao Y. Glass surface treatment technology, Chemical Industry Press, China, 2004, pp. 146(in Chinese).
王承遇, 陶瑛. 玻璃表面处理技术, 化学工业出版社, 2004, pp. 146.
[1] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[2] 梁平, 夏梓文, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同制备条件下ZnO:X%Eu的光电特性研究[J]. 材料导报, 2025, 39(10): 24040188-6.
[3] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[4] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[5] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[6] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[7] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[8] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[9] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[10] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[11] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[12] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[13] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[14] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[15] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed