Preparation and Photocatalytic Properties of ZIF-8@TiO2 Composite Photocatalysts
TU Shenghui1,2,*, ZHONG Rongfu1,2, ZHANG Chao1, LIU Anru1, WU Wenbin1, DU Jun1,2
1 School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, China
Abstract: In this work, a novel and efficient photocatalytic micron composite ZIF-8@TiO2 was prepared by hydrothermal method. We compared the ability of ZIF-8, TiO2 nanospheres and ZIF-8@TiO2 to photocatalytically degrade rhodamine B (RhB). The composite catalyst were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), UV-vis diffuse reflectance spectroscopy(DRS), specific copy Fourier transform infrared spectrometer(FTIR), and surface area measuring instrument(BET). The results of the characterization show that the TiO2 nanospheres grow uniformly on the surface of ZIF-8, and ZIF-8 as well as TiO2 are connected together by chemical bonds. The synergistic effect of ZIF-8 and TiO2 greatly enhances the catalytic ability of the composite photocatalyst. Among them, ZIF-8 in the ZIF-8@TiO2 composite provides a new way for photogenerated electron transfer in charge separators to reduce the charge recombination rate. Since the hybrid combines the advantages of ZIF-8 and TiO2, ZIF-8@TiO2 shows excellent photocatalytic degradation of rhodamine B. Finally, the possible photocatalytic mechanism of the hybrid photocatalyst was also discussed.
1 Métivier-Pignon H, Faur-Brasquet C, Le Cloirec P. Separation and Purification Technology, 2003, 31(1), 3. 2 Rong Y G, Liu L F, Mei A Y, et al. Advanced Energy Materials, 2015, 5(20), 372. 3 Sun J, Sun Y, Cheng X, et al. Technology of Water Treatment, 2017, 43(5), 38. 4 Liu L H, Liu H Y, Zhai J L. Journal of Nankai University(Natural Science Edition), 2022, 55(6), 74 (in Chinese). 刘立华, 刘会媛, 翟江丽. 南开大学学报(自然科学版), 2022, 55(6), 74. 5 Guan X, Lin S J, Lan J W, et al. Cellulose, 2019, 26(12), 7437. 6 Kumar A, Kumar A, Krishnan V, et al. ACS Catalysis, 2020, 10(17), 10253. 7 Zhou T W, Zang Z G, Wei J, et al. Nano Energy, 2018, 50, 118. 8 Wei J, Zang Z G, Zhang Y B, et al. Optics Letters, 2017, 42(5), 911. 9 Li S M, Tan J, Jiang Z J, et al. Chemical Engineering Journal, 2020, 384, 123354. 10 Mu Q Q, Zhu W, Li X, et al. Applied Catalysis B:Environmental, 2020, 262, 118144. 11 Bao S X, Lv M Y, Zhao C, et al. Inorganic Chemistry Frontiers, 2022, 9(11), 2725. 12 Wee L H, Janssens N, Sree S P, et al. Nanoscale, 2014, 6(4), 2056. 13 Zhang M, Shang Q G, Wan Y Q, et al. Applied Catalysis B:Environmental, 2019, 241, 149. 14 Son Y R, Ryu S G, Kim H S. Microporous and Mesoporous Materials, 2020, 293, 109819. 15 Chandra R, Mukhopadhyay S, Nath M. Materials Letters, 2016, 164, 571. 16 Pipelzadeh E, Rudolph V, Hanson G, et al. Applied Catalysis B:Environmental, 2017, 218, 672. 17 Sheng H B, Chen D Y, Li N J, et al. Chemistry of Materials, 2017, 29(13), 5612. 18 Li Y F, Pang A Y, Wang C J, et al. Journal of Materials Chemistry, 2011, 21(43), 12754C. 19 Wang Y Z. Antibacterial activities of Zn, Zn/Ce, Zn/Y and B doped TiO2 nano-materials and preparation of antibacterial ceramic. Ph. D. Thesis, Northeastern University, China, 2015 (in Chinese). 王昱征. Zn、Zn/Ce、Zn/Y及B掺杂TiO2纳米材料的抗菌性能及抗菌陶瓷的制备. 博士学位论文, 东北大学, 2015. 20 He Y S, Li Z, Xi H X. Ion Exchange and Adsorption, 2004(4), 376 (in Chinese). 何余生, 李忠, 奚红霞. 离子交换与吸附, 2004(4), 376. 21 Hu Y, Kazemian H, Rohani S, et al. Chemical Communications, 2011, 47(47), 12694. 22 Zhang Y J, Li Q Z, Liu C X, et al. Applied Catalysis B:Environmental, 2018, 224, 283. 23 Pi H T, Zhang D T, Zhang X M, et al. Dalton Transactions, 2017, 47(1), 209. 24 Chaudhari A K, Ryder M R, Tan J C. Nanoscale, 2016, 8(12), 6851.