Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23030150-6    https://doi.org/10.11896/cldb.23030150
  无机非金属及其复合材料 |
ZIF-8@TiO2复合材料的制备及光催化性能
涂盛辉1,2,*, 钟荣福1,2, 张超1, 刘桉如1, 吴文彬1, 杜军1,2
1 南昌大学化学化工学院,南昌 330031
2 鄱阳湖环境与资源利用教育部重点实验室,南昌 330031
Preparation and Photocatalytic Properties of ZIF-8@TiO2 Composite Photocatalysts
TU Shenghui1,2,*, ZHONG Rongfu1,2, ZHANG Chao1, LIU Anru1, WU Wenbin1, DU Jun1,2
1 School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 15719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用水热法制备了一种新型的高效光催化微米复合材料ZIF-8@TiO2,并比较了ZIF-8、TiO2纳米球和ZIF-8@TiO2光催化降解罗丹明B的能力。通过扫描电子显微镜(SEM)、X射线衍射(XRD)仪、X射线光电子能谱(XPS)仪、紫外-可见漫反射光谱(DRS)仪、傅里叶变换红外光谱(FTIR)仪和比表面积测量(BET)仪对合成的材料进行了表征。结果表明,TiO2纳米球在ZIF-8表面均匀生长,ZIF-8和TiO2通过化学键连接在一起。ZIF-8和TiO2的协同作用大大增强了复合光催化剂的催化能力。其中ZIF-8@TiO2复合材料的ZIF-8为电荷分离器中光生电子转移提供了一种新的方式,以降低电荷复合率。由于该混合物结合了ZIF-8和TiO2的优点,ZIF-8@TiO2显示出优异的光催化降解罗丹明B的能力。同时讨论了复合光催化剂可能的光催化机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂盛辉
钟荣福
张超
刘桉如
吴文彬
杜军
关键词:  水热法  ZIF-8@TiO2  光催化  罗丹明B    
Abstract: In this work, a novel and efficient photocatalytic micron composite ZIF-8@TiO2 was prepared by hydrothermal method. We compared the ability of ZIF-8, TiO2 nanospheres and ZIF-8@TiO2 to photocatalytically degrade rhodamine B (RhB). The composite catalyst were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), UV-vis diffuse reflectance spectroscopy(DRS), specific copy Fourier transform infrared spectrometer(FTIR), and surface area measuring instrument(BET). The results of the characterization show that the TiO2 nanospheres grow uniformly on the surface of ZIF-8, and ZIF-8 as well as TiO2 are connected together by chemical bonds. The synergistic effect of ZIF-8 and TiO2 greatly enhances the catalytic ability of the composite photocatalyst. Among them, ZIF-8 in the ZIF-8@TiO2 composite provides a new way for photogenerated electron transfer in charge separators to reduce the charge recombination rate. Since the hybrid combines the advantages of ZIF-8 and TiO2, ZIF-8@TiO2 shows excellent photocatalytic degradation of rhodamine B. Finally, the possible photocatalytic mechanism of the hybrid photocatalyst was also discussed.
Key words:  hydrothermal method    ZIF-8@TiO2    photocatalysis    rhodamine B
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  O643  
基金资助: 国家自然科学基金(31660482;51162022)
通讯作者:  *涂盛辉,南昌大学教授、硕士研究生导师。1987年华东化工学院化学物理专业本科毕业,2008年南昌大学工业催化专业硕士研究生毕业,2014年南昌大学环境工程学院博士研究生毕业。其团队主要研究方向包括:催化氧化技术与纳米功能材料的化学、物理及性能研究,化工新材料技术、废水处理及综合利用技术、固废处理及循环利用技术、天然产物分离提取技术、节能减排技术。主持完成省部级科技项目2 项,参加完成国家级科研项目3项,主持完成企业技术服务类项目88项,在EI和CSCD 期刊上发表学术论文36篇。tshnc@163.com   
引用本文:    
涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
TU Shenghui, ZHONG Rongfu, ZHANG Chao, LIU Anru, WU Wenbin, DU Jun. Preparation and Photocatalytic Properties of ZIF-8@TiO2 Composite Photocatalysts. Materials Reports, 2024, 38(16): 23030150-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030150  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23030150
1 Métivier-Pignon H, Faur-Brasquet C, Le Cloirec P. Separation and Purification Technology, 2003, 31(1), 3.
2 Rong Y G, Liu L F, Mei A Y, et al. Advanced Energy Materials, 2015, 5(20), 372.
3 Sun J, Sun Y, Cheng X, et al. Technology of Water Treatment, 2017, 43(5), 38.
4 Liu L H, Liu H Y, Zhai J L. Journal of Nankai University(Natural Science Edition), 2022, 55(6), 74 (in Chinese).
刘立华, 刘会媛, 翟江丽. 南开大学学报(自然科学版), 2022, 55(6), 74.
5 Guan X, Lin S J, Lan J W, et al. Cellulose, 2019, 26(12), 7437.
6 Kumar A, Kumar A, Krishnan V, et al. ACS Catalysis, 2020, 10(17), 10253.
7 Zhou T W, Zang Z G, Wei J, et al. Nano Energy, 2018, 50, 118.
8 Wei J, Zang Z G, Zhang Y B, et al. Optics Letters, 2017, 42(5), 911.
9 Li S M, Tan J, Jiang Z J, et al. Chemical Engineering Journal, 2020, 384, 123354.
10 Mu Q Q, Zhu W, Li X, et al. Applied Catalysis B:Environmental, 2020, 262, 118144.
11 Bao S X, Lv M Y, Zhao C, et al. Inorganic Chemistry Frontiers, 2022, 9(11), 2725.
12 Wee L H, Janssens N, Sree S P, et al. Nanoscale, 2014, 6(4), 2056.
13 Zhang M, Shang Q G, Wan Y Q, et al. Applied Catalysis B:Environmental, 2019, 241, 149.
14 Son Y R, Ryu S G, Kim H S. Microporous and Mesoporous Materials, 2020, 293, 109819.
15 Chandra R, Mukhopadhyay S, Nath M. Materials Letters, 2016, 164, 571.
16 Pipelzadeh E, Rudolph V, Hanson G, et al. Applied Catalysis B:Environmental, 2017, 218, 672.
17 Sheng H B, Chen D Y, Li N J, et al. Chemistry of Materials, 2017, 29(13), 5612.
18 Li Y F, Pang A Y, Wang C J, et al. Journal of Materials Chemistry, 2011, 21(43), 12754C.
19 Wang Y Z. Antibacterial activities of Zn, Zn/Ce, Zn/Y and B doped TiO2 nano-materials and preparation of antibacterial ceramic. Ph. D. Thesis, Northeastern University, China, 2015 (in Chinese).
王昱征. Zn、Zn/Ce、Zn/Y及B掺杂TiO2纳米材料的抗菌性能及抗菌陶瓷的制备. 博士学位论文, 东北大学, 2015.
20 He Y S, Li Z, Xi H X. Ion Exchange and Adsorption, 2004(4), 376 (in Chinese).
何余生, 李忠, 奚红霞. 离子交换与吸附, 2004(4), 376.
21 Hu Y, Kazemian H, Rohani S, et al. Chemical Communications, 2011, 47(47), 12694.
22 Zhang Y J, Li Q Z, Liu C X, et al. Applied Catalysis B:Environmental, 2018, 224, 283.
23 Pi H T, Zhang D T, Zhang X M, et al. Dalton Transactions, 2017, 47(1), 209.
24 Chaudhari A K, Ryder M R, Tan J C. Nanoscale, 2016, 8(12), 6851.
[1] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[2] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[3] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[4] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[5] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[6] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[7] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[8] 刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
[9] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[10] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[11] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[12] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[13] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[14] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[15] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed