Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110264-9    https://doi.org/10.11896/cldb.22110264
  多尺度稀土晶体材料及其应用 |
激光加热基座法单晶光纤生长技术
武安华1,2,3,*, 周声耀1,2,3, 戴云3, 张中晗3, 张振3, 寇华敏3, 王皙彬3, 苏良碧1,2,3
1 中国科学技术大学稀土学院,合肥 230026
2 中国科学院赣江创新研究院,江西 赣州 341000
3 中国科学院上海硅酸盐研究所,上海 201899
Single Fiber Crystal Growth Techniques by Laser Heating Pedestal Growth Method
WU Anhua1,2,3,*, ZHOU Shengyao1,2,3, DAI Yun3, ZHANG Zhonghan3, ZHANG Zhen3, KOU Huamin3, WANG Xibin3, SU Liangbi1,2,3
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, Jiangxi, China
3 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
下载:  全 文 ( PDF ) ( 9836KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单晶光纤是指具有光学纤维形态的单晶体,其同时保持了玻璃光纤的形态优势以及体块单晶优异的物理和化学性能,为高功率激光应用中替代传统玻璃光纤提供了一种思路。随着单晶光纤在材料种类及应用方向的不断拓展,单晶光纤在辐射探测、高温传感等领域也具有潜在的应用前景。本文在介绍单晶光纤应用背景的基础上,对国内外激光加热基座法单晶光纤生长技术进行了总结,详细讨论了单晶光纤生长过程中存在的问题及其改进方案,最后对单晶光纤未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武安华
周声耀
戴云
张中晗
张振
寇华敏
王皙彬
苏良碧
关键词:  晶体生长  单晶光纤  激光加热基座法  后热器    
Abstract: Single-crystal fiber (SCF) is a fiber-shaped monocrystalline material, which maintains the morphological advantage of glass fiber and the excellent physical and chemical properties of bulk single crystal, therefore providing a way to replace traditional glass fiber in high-power laser applications. With the continuous expansion of SCF in material types and application directions, SCF also has potential application prospects in radiation detection, high temperature sensing and other fields. In this paper, based on the introduction of the application background of SCF, the growth technology of SCF by laser heating pedestal growth (LHPG) method at home and abroad is summarized, and the problems in the growth process of SCF and the improvement scheme are discussed in detail, and finally the future development direction of SCF is prospected.
Key words:  crystal growth    single-crystal fiber    laser heating pedestal growth    after-heater
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TB321  
基金资助: 国家重点研发计划(2021YFB3601504);国家自然科学基金(52272014;62005302;62275255);上海市科委项目(21520711300;20520750200)
通讯作者:  *wuanhua @mail.sic.ac.cn,武安华,中国科学院上海硅酸盐研究所研究员、博士研究生导师。1991年在东北工学院获学士学位,1996年在东北大学获硕士学位,2002年3月在北京科技大学材料学专业获工学博士学位。2002年4月起在中国科学院上海硅酸盐研究所人工晶体中心工作。目前主要从事磁光晶体和单晶光纤等方面的研究工作,发表论文100余篇,申请专利10余项。   
引用本文:    
武安华, 周声耀, 戴云, 张中晗, 张振, 寇华敏, 王皙彬, 苏良碧. 激光加热基座法单晶光纤生长技术[J]. 材料导报, 2023, 37(3): 22110264-9.
WU Anhua, ZHOU Shengyao, DAI Yun, ZHANG Zhonghan, ZHANG Zhen, KOU Huamin, WANG Xibin, SU Liangbi. Single Fiber Crystal Growth Techniques by Laser Heating Pedestal Growth Method. Materials Reports, 2023, 37(3): 22110264-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110264  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110264
1 Lu Zihong, Zhao Xiansheng, Chen Jiqin, et al. Journal of Synthetic Crystals, 1989, 18(2), 154 (in Chinese).
卢子宏, 赵先胜, 陈继勤, 等. 人工晶体学报, 1989, 18(2), 154.
2 Wu Lusheng, Wang Aihua, Wu Jinming, et al. Journal of Synthetic Crystals, 1995, 24(4), 316 (in Chinese).
吴路生, 王爱华, 吴金明, 等. 人工晶体学报, 1995, 24(4), 316.
3 Lebbou K. Optical Materials, 2017, 63, 13.
4 Wang T, Zhang J, Zhang N, et al. Advanced Fiber Materials, 2019, 1(3-4), 163.
5 Yuan D S, Jia Z T, Shu J, et al. Journal of Synthetic Crystals, 2014, 43(6), 1317 (in Chinese).
原东升, 贾志泰, 舒骏, 等. 人工晶体学报, 2014, 43(6), 1317.
6 Andrade D C. Roceedings of the Royal Society of London, 1914, 90(619), 329.
7 Czochralski J. Zeitschrift Für Physikalische Chemie, 1918, 92, 219.
8 Gompeerz E V. Zeitschrift Für Physik, 1922, 8(1), 184.
9 Fejer M, Byer R L, Feigelson R, et al. Proc SPIE, 1982, 320, 50.
10 Yoon D H, Yonenaga I, Fukuda T, et al. Journal of Crystal Growth, 1994, 142, 339.
11 Snitzer E. Physical Review Letters, 1961, 7(12), 444.
12 Wang W C, Zhou B, Xu S H, et al. Progress in Material Science, 2018, 101, 90.
13 Shcherbakov E A, Fomin V V, Abramov A A, et al. In: Advanced Solid-State Laser Congress. France, 2013, pp. ATh4A.2.
14 Dawsonj W, Messerly M J, Heebnerj E, et al. SPIE, 2010, 7686, 768611.
15 Fukazawa T K, Tand I M. Journal of Crystal Growth, 1976, 32, 89.
16 Liu Jinghe, Li Jianli, Xu Bin, et al. Journal of the Chinese Ceramic So-ciety, 2001, 29(4), 370 (in Chinese).
刘景和, 李建利, 徐斌, 等. 硅酸盐学报, 2001, 29(4), 370.
17 Sun Jing, Liu Jinghe, Guan Xiaoxian, et al. Rare Metal Materials and Engineering, 2004,33(1),82(in Chinese).
孙晶, 刘景和, 关效贤, 等. 稀有金属材料与工程, 2004, 33(1), 82.
18 Ishida T, Togawa T, Morita H, et al. Proc SPIE, 1999, 3882(2), 268.
19 Slack G, Oliver D W. Physical Review B, 1971, 4(2), 592.
20 Dragic P, Law P, Ballato J, et al. Optics Express, 2010, 18(10), 10055.
21 Fair G E, Hay R S, Lee H D, et al. Proceedings of SPIE, 2010, 7686, 76860E.
22 Dawson J W, Messerly M J, Beach R J, et al. Optics Express, 2008, 16(17), 13240.
23 Liu Zhaojun, Gao Xibao, Cong Zhenhua, et al. Acta Photonica Sinica, 2019, 48(11), 28 (in Chinese).
刘兆军, 高悉宝, 丛振华,等. 光子学报. 2019, 48(11), 28.
24 Liao C R, Wang D N. Photonic Sensors, 2013, 3(2), 97.
25 Chen H, Buric M, Ohodnicki P R, et al. Applied Physics Reviews, 2018, 5(1), 011102.
26 Wang G, Xu Z Y, Zhou H C. Journal of Optoelectronicslaser, 2005, 16(4), 441 (in Chinese).
王高, 徐兆勇, 周汉昌. 光电子·激光, 2005, 16(4), 441.
27 Aizawa H, Ohishi N, Ogawa S, et al. Sensors and Actuators A: Physical, 2002, 101(1/2), 42.
28 An N, Zhou H L, Zhu K S, et al. Journal of Alloys and Compounds, 2020, 843, 156057.
29 Guo Y Q, Xia W, Hu Z Z, et al. Applied Optics, 2017, 56(8), 2068.
30 Tong L M, Shen Y H, Ye L H, et al. Measurement Science and Technology, 1999, 10(7), 607.
31 Liu B, Ohodnicki P R. Advanced Materials Technologies. 2021, 6(9), 2100125.
32 Liu B, Yu Z H, Hill C, et al. Optics Letters, 2016, 41(18), 4405.
33 Yang S, Feng Z A, Jia X T, et al. Journal of Lightwave Technology, 2020, 38(7), 1988.
34 Habisreuther T, Elsmann T, Pan Z W, et al. Applied Thermal Enginee-ring, 2015, 91, 860.
35 Wilson B A, Blue T E. IEEE Sensors Journal, 2018, 18(20), 8345.
36 Daw J, Rempe J, Palmer J, et al. Office of Scientific and Technical Information, DOI: 10.13140/RG.2.1.2271.4966.
37 Laurue M, Magallon D, Rempe J, et al. International Journal of Thermophysics, 2010, 31(8/9), 1417.
38 Wang T, Jia Z T, Li Y, et al. Journal of Synthetic Crystals, 2021, 50(9), 1603 (in Chinese).
王涛,贾志泰, 李阳, 等. 人工晶体学报, 2021, 50(9), 1603.
39 Chewpraditkul W, Swiderski L, Moszynski M, et al. IEEE Transactions on Nuclear Science, 2009, 56(6), 3800.
40 Benaglia A, Lucchini M, Pauwels K, et al. Journal of Instrumentation, 2016, 11, P05004.
41 Zhang Zhonghan, Dai Yun, Wang Yangxiao, et al. Chinese Journal of Quantum Electronics, 2021, 38(2), 192 (in Chinese).
张中晗, 戴云, 王阳啸, 等. 量子电子学报, 2021, 38(2), 192.
42 Chen Hu, Jiang Li, Fan Yang, et al. Nuclear Inst. and Methods in Phy-sics Research: A, 2020, 954, 161723.
43 Wang Xibin, Dai Yun, Zhang Zhonghan, et al. Journal of Rare Earths, 2021, 39, 1533.
44 Dai Yun, Zhang Zhonghan, Wang Xibin, et al. Crystals, 2021, 11(9), 1149.
45 Wang Xibin, Zhang Zhonghan, Dai Yun, et al. Physica B: Condensed Matter, 2022, 650, 414509.
46 Hu Chen, Zhang Liyuan, Zhu Renyuan, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, 223.
47 Archer J, Li E, Petasecca M, et al. Scientific Reports, 2017,7,12450.
48 Feigelson R S. Materials Science & Engineering B, 1988, 1(1), 67.
49 Andreeta M R B, Hernandes A C. Springer handbook of crystal growth, Springer, USA, 2010, pp. 393.
50 Nubling R K. Sapphire fibers for erbium:YAG and hollow waveguides for industrial carbon dioxide laser power delivery. Ph.D. Thesis, Rutgers University, USA, 1996.
51 Phomsakha V, Chang R S F, Djeu N. Review of Scientific Instruments, 1994, 65(12), 3860.
52 Fukuda T, Rudolph P, Uda S. Fiber crystal growth from the melt, Sprin-ger, USA, 2013, pp. 167.
53 Andreeta M R B, Andreeta E R M, Hernandes A C, et al. Journal of Crystal Growth, 2003, 234, 759.
54 Kim W, Florea C, Baker C, et al. In: High-Power Lasers 2012: Technology and Systems. Edinburgh, 2012, pp. 8547.
55 Tong L. Journal of Crystal Growth, 2000, 217, 281.
56 Shaw L B, Bayya S, Kim W, et al. In: Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Optical Society of America Technical Technical Digest (online), 2018, pp. SoW2H.3.
57 Bera S, Nie C D, Soskind M G, et al. Applied Optics, 2017, 56(35), 9649.
58 Nie C D, Bera S, Harrington J A. Optics Express, 2016, 24(14), 15522.
59 Gebrenichael E, Ponting B, Magana R, et al. Additive Manufacturing and Strategic Technologies in Advanced Ceramics : Ceramic Transactions, 2016, 258, 83.
60 Zhou Guangli, E Shulin, Deng Wenyuan. Optical Communication Techno-logy, 2007(6), 54 (in Chinese).
周广丽, 鄂书林, 邓文渊. 光通信技术, 2007(6), 54.
61 Yang Yilun, Ye Linhua, Bao Renjie, et al. Infrared Physics & Technology, 2018, 91, 85.
62 Wang T, Zhang J, Zhang N, et al. RSC Advances, 2019, 9, 22567.
63 Wang T, Zhang J, Yang L, et al. Crystal Growth & Design, 2020, 20(10), 6763.
64 Wang T, Zhang J, Yang Lu, et al. Journal of Materials Chemistry C, 2020, 8, 3830.
65 Wang Tao,Jia Zhitai, Li Yang, et al. Journal of Synthetic Growth, 2022, 51(3), 428 (in Chinese).
王涛, 贾志泰, 李阳,等. 人工晶体学报, 2022, 51(3), 428.
66 Dai Yun, Zhang Zhonghan, Su Liangbi, et al. Journal of Inorganic Materials, 2021, 36(7), 761.
67 Dai Yun, Zhang Zhonghan, Wang Yangxiao, et al. Optical Materials, 2021, 111, 110674.
68 Ishibashi S, Naganuma K, Yokohama I. Journal of Crystal Growth, 1998, 183, 614.
69 Shen J W, Wang X, Shen Y H. Journal of Synthetic Crystals, 2008, 37(1), 60 (in Chinese).
沈剑威,王迅,沈永行.人工晶体学报, 2008, 37(1), 60.
70 Wang Siyuan, Yin Yuqing, Wang Tao, et al. CrystEngComm, 2022, 24, 3053.
71 Uda S, Tiller W A. Journal of Crystal Growth, 1992, 121(1/2), 93.
72 Sugiyama Y, Hatakeyama I, Yokohama I. Journal of Crystal Growth, 1993, 134(3/4), 255.
73 Phomsakha V, Chang R S F, Djeu N. Review of Scientific Instruments, 1994, 65(12), 3860.
74 Andreeta M R, Andreeta E R M, Hernandes A C, et al. Journal of Crystal Growth, 2002, 234(4), 759.
75 Yin Yuqing, Zhang Na, Zhang Jian,et al. Applied Thermal Engineering, 2022, 201, 117741.
76 Chen Pengyi, Huang Enping, Lo Chiayao. Journal of Crystal Growth, 2012, 360, 111.
77 Chang Chunlin, Huang Shenglung, Lo Chiayao,et al. Journal of Crystal Growth, 2011, 318, 674.
78 Chen Pengyi, Chang Chunlin, Lan Chungwen,et al. Japanese Journal of Applied Physics, 2009, 48, 115504.
[1] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[2] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[3] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[4] 肖学峰, 徐家跃, 向卫东. 镥基闪烁晶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 12-19.
[5] 李雨萌, 田甜, 徐家跃. 外尔半金属TaAs单晶的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 120-125.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed