Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21060234-12    https://doi.org/10.11896/cldb.21060234
  无机非金属及其复合材料 |
核壳催化剂用于大气污染控制的研究进展
齐致雍1, 高凤雨1,2, 唐晓龙1,2,*, 易红宏1,2, 杜影1
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Research Progress in the Application of Core-Shell Catalysts to Air Pollution Control
QI Zhiyong1, GAO Fengyu1,2, TANG Xiaolong1,2,*, YI Honghong1,2, DU Ying1
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource Treatment of Industrial Typical Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 20950KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的发展进步,大气环境污染日趋严重,末端污染治理迫在眉睫。催化剂作为催化反应的核心,其制备与构型成为大气环境催化领域重点关注和研究的课题。常规的单一催化剂存在成本高、易失活、使用条件严格等不足。核壳结构催化剂拥有单一催化剂所不具备的双功能甚至多功能催化特性,在环境催化领域具有广阔的应用前景。   近年研究表明,核壳结构催化剂热稳定性较高,择形催化效果优异,在反应中的整体活性表现良好。但核壳结构的复合颗粒也存在团聚与分散不易调控、核壳分散厚度难以确定、结合强度有待提高等问题。目前已有学者将Mn系、Ce系等核壳材料应用于大气污染治理之中,并取得了良好的催化效果,但是在核壳结构的构筑以及制备方法的选择上还存在不足,在特定领域的针对性应用有待进一步提高。   本文详细介绍了目前制备核壳材料所常用的水热合成法、沉淀法、模板法等主要方法,比较了各种制备方法的优缺点。同时,综述了不同类型的核壳材料(如金属基核壳材料、金属氧化物基核壳材料、分子筛、中空核壳以及摇铃核壳材料)在大气污染治理中NO选择性催化还原(NH3-SCR)、VOCs脱除以及高低浓度CO去除等主要领域的应用研究进展。文章还分析讨论了主流核壳催化剂的优势及有待完善之处,并展望了未来重点研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐致雍
高凤雨
唐晓龙
易红宏
杜影
关键词:  核壳结构  纳米复合材料  合成方法  脱硫脱硝  VOCs净化    
Abstract: With the development and progress of industry, air pollution is becoming more and more serious, making the end pollution control immediately urgent. Catalyst is the core of catalytic reaction, and its preparation and configuration have become the focus of the field of atmospheric pollution treatment. Conventional single catalyst has some disadvantages such as high cost, easy inactivation, and narrow use conditions. In recent years, the core-shell nanomaterials have attracted the attention of scholars in the field of composite materials owing to their unique cavity structure. They not only have dual functions and multi-functional characteristics that traditional catalysts do not have, but also have broad application prospects in the field of environmental catalysis. Because of its good thermal stability and excellent shape-selective catalytic effect, the core-shell structure catalyst shows excellent overall acti-vity in the catalytic reaction. However, the core-shell composite particles also face some problems, such as easy agglomeration, poor thickness control of core-shell dispersion, and the need to improve the bonding strength. Although some scholars have prepared Mn-based and Ce-based core-shell nanomaterials for air pollution control, and achieved good catalytic effects in recent years, there are still shortcomings in the construction of the core-shell structure and the selection of the preparation methods. At the same time, the targeted application in specific fields needs to be further improved. In this review, firstly, the main methods of preparing core-shell materials such as hydrothermal synthesis, precipitation and template methods are introduced in detail, along with the advantages and disadvantages of various preparation methods. Then the applicable methods for preparing different types of core-shell catalysts, such as metal-based core-shell material, metal oxide-based core-shell material, molecular sieve, hollow core-shell and rattle core-shell materials, are analyzed. Moreover, the research advances of different types of core-shell materials with respects to the main applicatory fields in air pollution control (NH3-SCR denitrification, VOCs removal, high and low concentration CO removal) are summarized. The paper ends with brief but comparative and prospective discussions about the merits and demerits of the currently mainstream core-shell catalysts, and about the major research directions in the near future.
Key words:  core-shell structure    nano-composite materials    synthesis method    desulfurization and denitrification    VOCs purification
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  X511  
  TB321  
基金资助: 国家自然科学基金(U20A20130;21806009);中央高校基本科研业务费(FRF-IDRY-19-020);北京市科协青年人才托举工程
通讯作者:  *唐晓龙,教授、博士研究生导师。现任北京科技大学能源与环境工程学院副院长,“大气污染控制与资源化”学术梯队负责人,2013年教育部新世纪优秀人才。同时兼任中国工程教育认证协会环境类分委会委员、中国有色金属学会环境保护学术委员会委员等。2006年于北京理工大学(清华联合培养)获博士学位,长期以来主要从事烟气脱硫脱硝技术、工业废气资源化利用技术、环境功能材料等的研究与开发。近年来先后主持国家自然科学基金、国家863计划重点项目子课题、北京市科委“首都蓝天行动”专项课题、教育部博士点基金等10余项课题。在国内外学术刊物上发表学术论文240余篇,其中SCI检索91篇,出版专著1部,参编论著3部,申请发明专利 50 余项,已授权22项。txiaolong@126.com   
作者简介:  齐致雍,2020年6月毕业于北京科技大学,获工学学士学位。现为北京科技大学能源与环境工程学院硕士研究生,在唐晓龙教授的指导下开展低温NH3-SCR脱硝催化剂的研发与应用研究。
引用本文:    
齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
QI Zhiyong, GAO Fengyu, TANG Xiaolong, YI Honghong, DU Ying. Research Progress in the Application of Core-Shell Catalysts to Air Pollution Control. Materials Reports, 2023, 37(10): 21060234-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060234  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21060234
1 Solar P, Polonskyi O, Olbricht A, et al. Scientific Reports, 2017, 7(1), 8514.
2 Guo Z T. Synthesis and catalytic performance of noble metal-oxide core-shell/rattle nanocatalysts. Master's Thesis, Yantai University, China, 2019 (in Chinese).
郭郑彤. 贵金属-氧化物核壳/摇铃类纳米催化剂的合成与催化性能研究. 硕士学位论文, 烟台大学, 2019.
3 Yao Y. The unique Co3O4 based and Au-Co3O4 interfacial structures significant for low temperature CO oxidation and benzene combustion. Ph. D. Thesis, Nanjing University, China, 2015 (in Chinese).
姚瑶. Co3O4基底及Au-Co3O4界面结构对低温CO氧化及苯燃烧性能的影响. 博士学位论文, 南京大学, 2015.
4 Su H Y, Tian Q, Price C, et al. Nano Today, 2020, 31(1), 100834
5 Xu W Y, Kuang X, Qin X D. Journal of University of South China (Science and Technology), 2018, 32(2), 1(in Chinese).
徐文媛, 况熙, 秦晓丹. 南华大学学报(自然科学版), 2018, 32(2), 1.
6 Wang Y J. Study on prepration of alumina/silica composite abrasive and its CMP performance. Master's Thesis, Hefei University of Technology, China, 2016 (in Chinese).
汪亚军. 氧化铝/二氧化硅复合磨料的制备及其CMP性能研究. 硕士学位论文, 合肥工业大学, 2016.
7 Hou X X, Li X Y, Chen H P. Journal of Functional Materials, 2019, 50(9), 9157(in Chinese).
侯欣辛, 李翔宇, 陈红萍. 功能材料, 2019, 50(9), 9157.
8 Wu X. Hydrothermal/solvothermal synthesis and characterization of inorganic nanomaterals. Master's Thesis, Yangzhou University, China, 2006 (in Chinese).
吴晓. 无机纳米材料的水热溶剂热合成与表征. 硕士学位论文, 扬州大学, 2006.
9 Cui H M. Mechanism of synthesis of Ni/HBEA with hierarchical core-shell structure and its application. Master's Thesis, East China Normal University, China, 2017 (in Chinese).
崔慧梅. 可控的核壳结构镍基催化剂水热制备原理及其应用. 硕士学位论文, 华东师范大学, 2017.
10 Basak S, Kundu D, Naskar M K. Ceramics International, 2014, 40(8), 12923.
11 Jiang H L, Chen H P. Guangdong Chemical Industry, 2010, 37(11), 262 (in Chinese).
蒋华麟, 陈萍华. 广东化工, 2010, 37(11), 262.
12 Dönüs Tuncel. Nanoscale Advances, 2019, 1, 19.
13 Xu T T, Su W, Jin X Q, et al. Advances in Fine Petrochemicals, 2019, 20(1), 53 (in Chinese).
徐婷婷, 孙维, 金学庆, 等. 精细石油化工进展, 2019, 20(1), 53.
14 Xu J J. Preparation and characterization of micropotous and mesoporous materials with croe-shell structure. Master's Thesis, East China Normal University, China, 2011 (in Chinese).
许佳佳. 微孔与介孔核壳结构材料的制备与表征. 硕士学位论文, 华东师范大学, 2011.
15 Liu Z M, Xie C, Wang H Y, et al. Modern Chemical Industry, 2012, 32(5), 82 (in Chinese).
刘志明, 谢成, 王海英, 等. 现代化工, 2012, 32(5), 82.
16 Zhang S W, Xia F, Nanoscale, 2021, 13(16), 7471.
17 Li S. Preparations, structure tuning and functional applications of core-shell nanomaterials. Ph. D. Thesis, Tsinghua University, China, 2015 (in Chinese).
李洒. 核壳结构纳米材料的制备、调控与功能化特性. 博士学位论文, 清华大学, 2015.
18 Li C, Li Q, Kaneti Y V. Chemical Society Reviews, 2020, 49, 4681.
19 Wang P, Wu Y, Jiang Z T. China Surface Engineering, 2019, 32(6), 157(in Chinese).
王鹏, 吴一, 姜铸锋, 等. 中国表面工程, 2019, 32(6), 157.
20 Zhang J, Zhang X F, Tu M, et al. Mod-Ernst Chemical, 2010, 30(8), 16.
21 Zhang Y L, Li N, Zhang Z Y, et al. Journal of the American Chemical Society, 2020, 142, 8490.
22 Mu X X, Chen H K, Jiang H L, et al. New Chemical Materials, 2020, 48(11), 39 (in Chinese).
慕霞霞, 陈虎魁, 蒋红丽, 等. 化工新型材料, 2020, 48(11), 39.
23 Guo Z T. Synthesis and catalytic performance of noble metal-oxide core-shell/rattle nanocatalysts. Master's Thesis, Yantai University, China, 2019 (in Chinese).
郭郑彤. 贵金属-氧化物核壳/摇铃类纳米催化剂的合成与催化性能研究. 硕士学位论文, 烟台大学, 2019.
24 Dong Z H, Lai X Y, Halpert J E, et al. Advanced Materials, 2012, 24(8), 1046.
25 Chen Z X, Zhen B Y, Li X X. Chemical Industry and Engineering Progress, 2010, 29(1), 94 (in Chinese).
陈彰旭, 郑炳云, 李先学. 化工进展, 2010, 29(1), 94.
26 Li A, Zhu W J, Li C C. Chemical Society Reviews, 2019, 48, 1874.
27 Wang K J, Mao Q F, Fei W M. RSC Advances, 2021, 11(14), 8375.
28 Li Y W, Zhang M, Wang X J, et al. Journal of Aeronautical Materials, 2018, 38(5), 10 (in Chinese).
李元伟, 张猛, 王小健, 等. 航空材料学报, 2018, 38(5), 10.
29 Sanjay S S, Green S. Characterization and applications of nanoparticles, Elsevier Press, Amsterdam, 2019.
30 Pan Y. The control of NOx emission of coal-fired boiler. Master's Thesis, North China Electric Power University, China, 2017 (in Chinese).
潘越. 燃煤锅炉氮氧化物排放控制研究. 硕士学位论文, 华北电力大学, 2017.
31 Ma D R, Liu H C, Chen Y Y. Applied Chemical Industry, 2019, 48(5), 1156 (in Chinese).
麻丁仁, 刘慧超, 陈缘缘. 应用化工, 2019, 48(5), 1156.
32 Li J, Chang H, Ma L, et al. Catalysis Today, 2011, 175(1), 147.
33 Zhang L, Zhang D, Zhang J, et al. Nanoscale, 2013, 5(20), 9821.
34 Cai S X, Hang H, Li H R, et al. Nanoscale, 2016, 8(6), 3588.
35 Huang B J, Yu D Q, Sheng Z Y, et al. Journal of Environmental Sciences, 2017, 55, 129.
36 Li S H, Huang B C, Yu C L. Catalysis Communications, 2017, 98(10), 47.
37 Chi B, Qu H X, Xing X, et al. Journal of Alloys and Compounds, 2017, 726, 906.
38 Xu J S, Tao Y Q, Wu B Z, et al. Anhui Chemical Industry, 2021, 47(1), 43 (in Chinese).
徐洁书, 陶艳琪, 吴炳智, 等. 安徽化工, 2021, 47(1), 43.
39 Liu S H, Huang B J, Yang L, et al. Guangdong Chemical Industry, 2015, 42(10), 72 (in Chinese).
刘世辉, 黄冰洁, 杨柳, 等. 广东化工, 2015, 42(10), 72.
40 Feng Y S. Effects of doping Co-Ce oxides on the structure and properties of Mn/TiO2 low-temperature deNOx catalysts. Master's Thesis, Jiangsu University of Science and Technology, China, 2013. (in Chinese).
冯云桑. Co-Ce氧化物对Mn/TiO2系低温脱硝催化剂结构与性能的影响. 硕士学位论文, 江苏科技大学, 2013.
41 Liu J, Wang L L, Fei Z Y, et al. Journal of Fuel Chemistry and Technology, 2016, 44(8), 954.
42 Sheng Z Y, Ma D R, Yu D Q, et al. Chinese Journal of Catalysis, 2018, 39, 821.
43 Zhang X P, Han X K, Li C F. Catalysts, 2021, 856, 113669.
44 Yu C Y, Yan G S, Li Z P, et al. Current Pharmaceutical Design, 2016, 22(4), 506.
45 Ghosh R S, Harold M P, Wang D. Chemical Engineering Journal, 2021, 418, 129065.
46 Du T Y, Qu H X, Liu Q, et al. Chemical Engineering Journal, 2015, 262, 1199.
47 Zhang L, Du T Y, Qu H X, et al. Chemical Engineering Journal, 2017, 313, 702.
48 Chi B, Qu H X, Xing X, et al. Journal of Alloys and Compounds, 2017, 726, 906.
49 Zhang T, Qiu F, Li J H. Applied Catalysis B:Environmental, 2016, 195, 48.
50 Wang J G, Liu J Z, Tang X J, et al. Chemical Engineering Journal, 2021, 418, 129433.
51 Shi Y, Wang X X, Xia Y F, et al. Molecular Catalysis, 2017, 433, 265.
52 Cui S H, Zhang J T, Shen Z B. et al. Chemical Industry and Engineering Progress, 2015, 34(9), 3311 (in Chinese).
崔生航, 张君涛, 申志兵. 化工进展, 2015, 34(9), 3311.
53 Xu J Q, Tang T, Zhang Q, et al. Vacuum, 2021, 188, 110174.
54 Qiao T, Liu Z G, Liu C H, et al. Applied Catalysis A:General, 2021, 617, 118128
55 Yang K. Simultaneous desulfurization and denitrification performance research on new core-shell structure adsorbent. Ph. D. Thesis, University of Science & Technology Beijing, China, 2020 (in Chinese).
杨昆. 新型核壳结构吸附剂同时脱硫脱硝性能研究. 博士学位论文, 北京科技大学, 2020.
56 Zhu N F, Wang X Q, Song H. Energy Chemical Industry, 2017, 38(5), 27 (in Chinese).
朱宁芳, 王雪芹, 宋华. 能源化工, 2017, 38(5), 27.
57 Zhang L, Du T Y, Qu H X, et al. Chemical Engineering Journal, 2017, 313(1), 702.
58 Zhang J, Wang L, Wu Z Y, et al. Industrial & Engineering Chemistry Research, 2019, 58(34), 15453.
59 Hosseini M, Barakat T, Cousin R, et al. Applied Catalysis B:Environmental, 2012, 111-112, 218.
60 Zheng J G, Tao M, Feng L. Journal of Alloys and Compounds, 2021, 873, 159802.
61 Li Y Z, Du Y H, Wei Y C, et al. Catalysis Science & Technology, 2017, 7(4), 968.
[1] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[2] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[3] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[4] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[5] 骆燕苏, 李凯, 王驰, 王飞, 宋辛, 包加成, 宁平, 孙鑫. 矿浆法同时脱硫脱硝的研究进展与展望[J]. 材料导报, 2022, 36(9): 20080316-7.
[6] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[7] 安玉龙, 刘灿, 徐开蒙, 郑云武, 林旭. 生物质碳点荧光材料在生物医药领域中的应用[J]. 材料导报, 2022, 36(22): 20100133-12.
[8] 任智翔, 杨康, 李肽脂, 迂晨, 詹华, 吴锋, 李辉. 超声波辅助氧化改性钙基吸收剂的制备及性能研究[J]. 材料导报, 2022, 36(2): 21010211-5.
[9] 朱孟亚, 邹善娟, 尤楠. 纳米复合材料ZrO2@rGO吸附脱除水溶液中的阿散酸[J]. 材料导报, 2022, 36(17): 20110076-6.
[10] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[11] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[12] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[13] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[14] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[15] 杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed