Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19062-19069    https://doi.org/10.11896/cldb.19120181
  无机非金属及其复合材料 |
层状双金属氢氧化物及其复合材料的制备与应用研究新进展
杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉
昆明理工大学理学院,昆明 650500
Recent Advances in the Preparation and Application of Layered Double Hydroxides and Their Composites
YANG Zhengfang, ZHANG Yue, CAI Jinxiao, LIU Zhiyong, HU Jue
Faculty of Science, Kunming University of Science and Technology, Kunming 650500,China
下载:  全 文 ( PDF ) ( 2957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会经济的发展,能源短缺和环境污染问题越来越显著,探索电解水获得氢能、超级电容器的研究和水中污染物离子的处理逐渐受到人们的广泛关注。电催化分解水制氢需要高效的电催化剂,超级电容器需要具有优异电化学性能的电极材料,水中有毒污染离子的去除也需要高效低廉的吸附剂。而层状双金属氢氧化物(LDH)体现出多方面的特性,如记忆效应、良好的催化性能、阴离子交换性、酸碱性以及热稳定性等,有望用于解决上述问题。
LDH具有优异的性能,而且成本较低,组成结构可调控,层间可以进行插层反应。然而,LDH的电子传输能力差,会降低其电化学性能;在合成时易团聚,电导率低且催化活性也不高。LDH的制备方法多种多样,可通过改进LDH的合成方法,将LDH和各种功能材料进行复合来解决这些问题。
近年来,研究者们将LDH原位生长在各种导电载体上,以提高LDH的导电性;开发纳米合成技术,将合成的LDH剥离出纳米片或直接在导电基上垂直定向生长出二维LDH纳米片,使有利于催化反应的活性位点大量暴露在材料表面,从而提高其催化活性;将LDH与石墨烯复合,使超级电容器电极材料的比电容增大,导电性和循环稳定性增强,并且还可以提升LDH对CO2的吸附能力,使LDH广泛用于解决能源危机和环境污染问题。
本文综述了几种LDH的制备方法及其复合材料的合成方法,归纳了LDH及其复合材料近年来在催化、储能以及环境保护中的应用。对LDH在电催化水氧化和光催化方面的应用分别做了介绍,然后阐述了LDH材料在超级电容器和处理水体污染等环境问题方面的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨正芳
张悦
蔡金霄
刘志勇
胡觉
关键词:  层状双金属氢氧化物  合成方法  催化  储能  吸附    
Abstract: In a world with rising concern about energy security, environmental crisis, and global warming, exploring superior catalysts for oxygen evolution reaction, super capacitor, and the treatment of pollutant ions in waste water are getting more and more attention. Layered double hydro-xide (LDH) has many properties such as memory effect, nice catalysis ability, anion exchange, acid-base and thermal stability, which has been widely concerned in various fields to solve the above problems.
LDH has excellent performance for oxygen evolution electrocatalysis, low cost, adjustable structure. The intercalation reaction can be carried out between layers of LDH. However, the poor electron conductivity of LDH reduces its electrochemical performance. Moreover, the LDH layers are easy to agglomerate in the synthesis process, resulting low conductivity and low catalytic activity. These problems can be solved by improving the synthesis method of LDH and compounding LDH with various functional materials.
In recent years, in order to improve the conductivity of LDH, researchers have in situ grown LDH on various conductive substrate, which can expose more active sites and as a result improve the catalytic activity of LDHs. By compounding LDH with graphene, the specific capacitance, conductivity and cycle stability of LDH/graphene composites can be enhanced, and the adsorption capacity of LDH for CO2 can also be improved, making LDH widely used to solve energy crisis and environmental pollution problems.
This article reviews the synthesis methods of LDH and LDH composites, and summarizes the applications of LDH and its composites in catalysis, energy storage, and environmental protection in recent years. First, the application of LDH in electrocatalytic water oxidation and photocatalysis is introduced, and then the application of LDH materials in supercapacitors and environmental problems such as water pollution treatment is described.
Key words:  layered double hydroxide    synthesis method    catalytic    energy storage    adsorption
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  O69  
基金资助: 国家自然科学基金项目地区基金(21862011; 51864024);云南省优秀青年基金(2019FI003);昆明理工大学高层次人才引进项目(KKKP201707010, KKKP201752011)
通讯作者:  hujuework@hotmail.com   
作者简介:  杨正芳,现为昆明理工大学理学院的研究生,在胡觉教授的指导下进行研究。目前主要研究领域为层状双金属氢氧化物的合成与应用。
胡觉,昆明理工大学教授。2012年毕业于中国科学院合肥物质科学研究院,获博士学位,2014—2017年分别在美国布鲁克海文国家实验室和香港科技大学进行博士后研究。入选中国科学院青年创新促进会、云南省千人计划青年人才,获云南省基础研究计划“优秀青年”基金。近年来,在金属基能源催化材料领域发表论文40余篇,包括Journal of The American Chemical SocietyEnergy & Environmental ScienceJouleAdvanced Energy MaterialsAdvanced Functional MaterialsNano EnergyACS CatalysisSmallJournal of Materials Chemistry A等。
引用本文:    
杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.
YANG Zhengfang, ZHANG Yue, CAI Jinxiao, LIU Zhiyong, HU Jue. Recent Advances in the Preparation and Application of Layered Double Hydroxides and Their Composites. Materials Reports, 2021, 35(19): 19062-19069.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120181  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19062
1 Vaysse C, Guerlou-Demourgues L, Duguet E, et al. Inorganic Chemistry, 2003, 42(15), 4559.
2 Ma W, Wang L, Xue J, et al. Journal of Alloys and Compounds, 2016, 662, 315.
3 Jia L, Ma J Z,Gao D G, et al. Progress in Chemistry, 2018, 30(2), 295(in Chinese).
贾潞, 马建中, 高党鸽, 等.化学进展, 2018, 30(2), 295.
4 Vaccari A. Catalysis Today, 1998, 41(1-3), 53.
5 Rives V, del Arco M, Martín C. Applied Clay Science, 2014, 88, 239.
6 Mousty C, Prévot V. Analytical & Bioanalytical Chemistry, 2013, 405(11), 3513.
7 Li C, Wei M, Evans D G, et al. Small, 2014, 10(22), 4469.
8 Fang L, Li W, Chen H, et al. Rsc Advances, 2015, 5(24), 18866.
9 Yi S, Yang Z H, Wang S W, et al. Journal of Applied Polymer Science, 2011, 119(5), 2620.
10 Xie H, Jiao Q Z, Duan X. Chinese Journal of Applied Chemistry, 2001, 18(1), 70(in Chinese).
谢晖, 矫庆泽, 段雪.应用化学, 2001, 18(1), 70.
11 Chibwe K, Jones W. Journal of the Chemical Society Chemical Communications, 1989, 14(4), 926.
12 Fan H L, He W, Jiang Y Y, et al. Engineering Plastics Application, 2011, 39(4), 10(in Chinese).
范惠琳, 何伟, 姜莹莹, 等.工程塑料应用, 2011, 39(4), 10.
13 Yang P P, Wu T H. Petrochemical Technology & Application, 2005, 23(1), 61(in Chinese).
杨飘萍, 吴通好.石化技术与应用, 2005, 23(1), 61.
14 Stanimirova T, Vergilov I, Kirov G, et al. Material Science, 1999, 34(17), 4153.
15 Wang Y Z, Chen Z W, Guo H. Journal of Synthetic Crystals, 2008, 37(5), 1219(in Chinese).
王永在, 陈志伟, 郭红.人工晶体学报, 2008, 37(5), 1219.
16 Zhang B, Yan Z M, Zhu W F, et al. Guangdong Chemical Industry, 2018, 45(8), 28(in Chinese).
张兵, 闫祖苗, 朱文凤, 等.广东化工, 2018, 45(8), 28.
17 Duan S C, Li X, Li Y, et al. Journal of Molecular Catalysis, 2015, 29(4), 48(in Chinese).
段胜聪, 李雪, 李悦, 等.分子催化, 2015, 29(4), 48.
18 Pavel O D, Birjega R, Che M, et al. Catalysis Communications, 2008, 9(10), 1974.
19 Jiang W, Nong L P, Lai W L, et al. Chemical Research and Application, 2004, 16(6), 828(inChinese).
蒋维, 农兰平, 赖闻玲, 等.化学研究与应用, 2004, 16(6), 828.
20 Su J X, Yin J, Qu W, et al. China Environmental Science, 2009, 29(5), 518(in Chinese).
苏继新, 殷晶, 屈文, 等.中国环境科学, 2009, 29(5), 518.
21 Zhu X, Tang C, Wang H F, et al. Journal of Materials Chemistry A, 2015, 3(48), 24540.
22 Cruz J C,Baglio V,Siracusano S, et al. International Journal of electrochemical science, 2011, 7 (12), 6607.
23 Xu Y, Bian W, Wu J, et al. Electrochimica Acta,2015,151(49),276.
24 Jin C, Lu F, Cao X, et al. Journal of Materials Chemistry A, 2013, 1(39), 12170.
25 Li Y, Zhang L, Xiang X, et al. Journal of Materials Chemistry A, 2014, 2(33), 13250.
26 Chen Q, Yuan Z, Zhu Y, et al. Journal of Materials Chemistry A, 2015, 3(13), 6878.
27 Na H, Zhao F, Li Y. Journal of Materials Chemistry A, 2015, 3(31), 16348.
28 Feng X L, Qu Z K, Chen J, et al. Chemical Journal of Chinese Universities, 2017, 38(11), 1999(in Chinese).
冯晓磊, 曲宗凯, 陈俊, 等.高等学校化学学报, 2017, 38(11), 1999.
29 Wang Y, Tao S, Lin H, et al. Nano Energy, 2021, 81, 105606.
30 Chen Z, Ju M, Sun M, et al. Angewandte Chemie International Edition, 2021, 60(17), 9699.
31 Hu J, Zhang C, Jiang L, et al. Joule, 2017, 1(2), 383.
32 Watanabe T, Fukayama S, Miyauchi M, et al. Journal of Sol-Gel Science and Technology, 2000, 19(1-3), 71.
33 Fan G, Li F, Evans D G, et al. Chemical Society Reviews, 2015, 45(50), 7040.
34 Wang L, Li S F, Fang Y K, et al. Science & Technology in Chemical Industry, 2020, 28(3), 53(in Chinese).
王磊, 李树芬, 方永奎, 等. 化工科技, 2020, 28(3), 53.
35 Shao M, Zhang R, Li Z, et al. Chemical Communications, 2015, 51(88), 93.
36 Yuan S J. Chinese Journal of Inorganic Chemistry, 2009, 25(11), 1977(in Chinese).
袁素珺.无机化学学报, 2009, 25(11), 1977.
37 Zhang X B, Wang Z J, Liu H P. New Chemical Materials, 2017, 45(3), 108(in Chinese).
张小博, 王泽甲, 刘海萍.化工新型材料, 2017, 45(3), 108.
38 Takei T, Miura A, Kumada N. Journal of Asian Ceramic Societies, 2018, 2(3), 289.
39 Jawad A, Li Y, Lu X, et al. Journal of Hazardous Materials, 2015, 289, 165.
40 Wu X, Du N, Li H, et al. Acta Chimica Sinica, 2014, 72(8), 963.
41 Zhang L, Dai C H, Zhang X X, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(9), 2380.
42 Xia S, Zhang G, Meng Y, et al. Applied Catalysis B: Environmental, 2020, 278, 119266.
43 Woo M A, Song M S, Kim T W, et al. Journal of Materials Chemistry, 2011, 21(12), 4286.
44 Zhao Y, Yang Y B, Xu B, et al. Journal of Dalian Jiaotong University, 2018, 39(5), 48(in Chinese).
赵宇, 杨玉彬, 徐冰, 等. 大连交通大学学报, 2018, 39(5), 48.
45 Han Y J, Han E S, Zhu L Z, et al. Chinese Journal of Power Sources, 2019, 43(1), 142(in Chinese).
韩艳静, 韩恩山, 朱令之, 等. 电源技术, 2019, 43(1), 142.
46 Wang X L, Yan H Y, Zhang J Q,et al. Bulletin of the Chinese Ceramic Society, 2018, 37(10), 3108(in Chinese).
王晓亮, 闫慧妍, 张佳齐, 等.硅酸盐通报, 2018, 37(10), 3108.
47 Yao J F, Xiang W F, Sun R, et al. Micronanoelectronic Technology, 2019, 56(4), 274(in Chinese).
姚江峰, 相文峰, 孙睿, 等.微纳电子技术, 2019, 56(4), 274.
48 He Z, Yuan H. Nanoscale, 2015, 7(16), 7022.
49 Zhang R, An H, Li Z, et al. Chemical Engineering Journal, 2016, 289, 85.
50 Wang X, Yan C, Sumboja A, et al. Advanced Energy Materials, 2014, 4(6), 1.
51 Yang J, Chang Y, Fan X, et al. Advanced Energy Materials, 2015, 4(18).
52 Wu H P, Kong H, Niu Y L, et al. Journal of Jiangnan University(Natural Science Edition), 2013, 12(6), 725(in Chinese).
吴红平, 孔惠, 牛玉莲, 等.江南大学学报(自然科学版), 2013, 12(6), 725.
53 Zhu L, Yi X Q, Dong Q, et al. Journal of Heilongjiang Hydraulic Engineering College, 2018, 9 (2), 45(in Chinese).
朱琳, 衣晓庆, 董强, 等.黑龙江大学工程学报, 2018, 9(2), 45.
54 Chang Y. Nanoscale, 2014, 6(6), 104.
55 Niu Y L, Jin X, Zhen J, et al. Chinese Journal of Inorganic Chemistry, 2012, 28(9), 1878(in Chinese).
牛玉莲, 金鑫, 郑佳, 等.无机化学学报, 2012, 28(9), 1878.
56 Yan L, Kong H, Li Z. Acta Chimica Sinica, 2013, 71(5), 822.
57 Jin X Q, Cao J, Hu Z S. Chinese Journal of Applied Chemistry, 2015, 32(5), 583(in Chinese).
金小青, 曹杰, 胡忠山.应用化学, 2015, 32(5), 583.
58 Liu H, Zhu J, Li Z, et al. Chemical Engineering Journal, 2021, 403, 126325.
59 Goh K H, Lim T T, Dong Z. Water Research, 2008, 42(6-7), 1343.
60 Lin Y, Fang Q, Chen B. Journal of Environmental Sciences, 2014, 26(3), 493.
61 Qin F, Jiang Q F, Wang T, et al. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1), 115(in Chinese).
秦芳, 蒋钦凤, 王婷, 等.广西师范大学学报(自然科学版), 2015, 33(1), 115.
62 Yu X Y, Qiu X, Su W, et al. Journal of Hubei University(Natural Science Edition),2016, 38(1), 79(in Chinese).
喻杏元, 邱喜, 苏闻, 等.湖北大学学报(自然科学版), 2016, 38(1), 79.
63 Cao L L, Liang J T, Tian H Y, et al. Journal of Synthetic Crystals,2017(12), 2451(in Chinese).
曹乐乐, 梁锦陶, 田浩洋, 等.人工晶体学报, 2017(12), 2451.
64 Valente J S. Applied Catalysis B Environmental, 2011, 102(1-2), 276.
65 Seftel E M, Puscasu M C, Mertens M, et al. Applied Catalysis B Environmental, 2014, 150, 157.
66 Wang Y Y, Chen Q L. Inorganic Chemicals Industry, 2017, 49(12), 79(in Chinese).
王永友, 陈前林.无机盐工业, 2017, 49(12), 79.
67 Liang X, Zang Y, Xu Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 433(35), 122.
68 Garciagallastegui A, Iruretagoyena D, Gouvea V, et al. Chemistry of Materials, 2012, 24(23), 4531.
69 Yuan X Y, Wang Y F, Wang J, et al. Chemical Engineering Journal, 2013, 221(2), 204.
70 Yao M. Acta Scientiae Circumstantiae, 2005, 25(8), 1034(in Chinese).
姚铭.环境科学学报, 2005, 25(8), 1034.
71 Zhou L F, Wang Y S, Wei Y C. Acta Scientiae Circumstantiae, 2017, 36 (z2), 108(in Chinese).
周立峰, 王义松, 未艺超.冶金能源, 2017, 36 (z2), 108.
72 Shang D H. Industrial Water Treatment, 2014, 34(12), 38(in Chinese).
商丹红.工业水处理, 2014, 34(12), 38.
73 Jia Y S, Wang H Y, Zhao X S, et al. Acta Chimica Sinica,2015, 73(11), 125(in Chinese).
贾云生, 王火焰, 赵雪松, 等.化学学报, 2015, 73(11), 125.
74 Zhang T, Li Q, Xiao H, et al. Applied Clay Science, 2013, 72, 117.
75 Zhang G, Tao W, Li Y, et al. Chemical Engineering Journal, 2012, 191(19), 306.
76 Poudel M B, Awasthi G P, Kim H J. Chemical Engineering Journal, 2021, 417, 129312.
77 Hu Y Y, Pan C, Zheng X, et al. Journal of Hazardous Materials, 2021, 401, 123374.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[3] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[4] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[5] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[6] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[7] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[8] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[9] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[10] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[13] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[14] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[15] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed