V10O24·12H2O@ACFC with Core-shell Structure:a High Performance Symmetric Supercapacitor Electrode Material
HUANG Xianmin1,2, LI Ziwei1,*, ZHANG Xiaoyan1, LIU Hui1,2, GAO Hongyan1, WANG Hai2,*
1 School of Chemical and Environmental Science, Yili Normal University, Yining 835000, Xinjiang, China 2 Laboratory of Material Physics, School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, China
Abstract: Supercapacitors with their high power density and long cycle life have attracted much attention. In order to engineer an electrode material with low-cost, easy to obtain and high-performance, cheap and easily available carbon fiber cloth is used as the substrate to activate itself by electrochemical etching in this work. And the actived carbon fiber cloth acting as the carrier successfully induces V2O5 sol to be converted into gel, and then on its surface obtains a composite material coated with V10O24·12H2O ultra-thin nanosheets through freeze-drying treatment. Finally, the electrode materials with core-shell structure are prepared under simple and mild conditions. UV-Vis spectroscopy was employed to reveal the process of this adsorption conversion. The essence of electrochemical activation is that oxygen containing functional groups are introduced into the carbon fiber cloth and its adsorption performance is enhanced while showing mesoporous characteristics. SEM and XRD results show that the composite has a core-shell structure with carbon fiber as the ‘core' and V10O24·12H2O ultra-thin nanosheets as the ‘shell'. Electrochemical measurements indicate that the specific capacity is 488 F/g at 1 A/g. While, the initial specific capacity of 256 F/g at 5 A/g is still being increased continuously at the beginning of the cycles within 4 000, from here until 10 000 cycles, the capacity retention could reach to 100%, showing the ulta-long life span. When the power density is 1 875 W/kg, the energy density of 20.1 Wh/kg can still be output. The excellent electrochemical performance benefits from the structural synergy of the electrode material. It is the core-shell structure that organically combines the electric double-layer capacitance behavior on ACFC-1.0 with the pseudo capacitance behavior on V10O24·12H2O ultra-thin nanos-heets, which provides a feasible scheme for the design of new high-performance supercapacitors.
1 Libich J, Máca J, VondráK J, et al. Journal of Energy Storage, 2018, 17, 224. 2 Xing J J, Sun P P, Shi F N. Journal of Materials Science and Enginee-ring, 2022, 40(1), 160 (in Chinese). 邢锦娟, 孙平平, 史发年. 材料科学与工程学报, 2022, 40(1), 160. 3 Zhu Q C, Zhao D Y, Cheng M Y, et al. Advanced Energy Materials, 2019, 9(36), 1901081. 4 Wei F, Lv Y H, Zhang S Q, et al. Renewable Energy, 2021, 180, 683. 5 Huang S F, Zhu X L, Sarkar S, et al. APL Materials, 2019, 7(10), 100901. 6 Zhang S, Xiao S Y, Li D P, et al. Energy Storage Materials, 2022, 48, 172. 7 Wang W, Liu W Y, Zeng Y X, et al. Advanced Materials, 2015, 27(23), 3572. 8 Nie W Q, Sun J D, Xu S, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 981 (in Chinese). 聂文琪, 孙江东, 许帅, 等. 复合材料学报, 2022, 39(3), 981. 9 Jiang G S, Senthil R A, Sun Y Z, et al. Journal of Power Sources, 2022, 520, 230886. 10 Geioushy R A, Attia S Y, Mohamed S G, et al. Journal of Energy Sto-rage, 2022, 48, 104034. 11 Chen J W, Lee P S. Advanced Energy Materials, 2021, 11(6), 2003311. 12 Chang J L, Gao Z Y, Wang X R, et al. Electrochimica Acta, 2015, 157, 290. 13 Dai C C, Wan J F, Yang J, et al. Applied Surface Science, 2018, 444, 105. 14 Han X Y, Zhang Y F, Wan J, et al. Journal of Alloys and Compounds, 2020, 838, 155695. 15 Yao D, Ouyang Y, Jiao X Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(18), 6246. 16 Panigrahi K, Howli P, Chattopadhyay K K. Electrochimica Acta, 2020, 337, 135701. 17 Huang G, Wang Y, Zhang T Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 672. 18 Wang H Y, Deng J, Xu C M, et al. Energy Storage Materials, 2017, 7, 216. 19 Li X R, Jiang Y H, Wang P Z, et al. New Carbon Materials, 2020, 35(3), 232. 20 Hu F, Lin Y, Qiu Y, et al. Ceramics International, 2021, 47(5), 5968. 21 Di W L, Liu Y J, Song M M, et al. Analytical Instrumentation, 2019(3), 77 (in Chinese). 邸卫利, 刘月菊, 宋明明, 等. 分析仪器, 2019(3), 77. 22 Li H Y, Wei C, Wang L, et al. Journal of Materials Chemistry A, 2015, 3(45), 22892. 23 Cesbron F, Vachey H. Bulletin de la Société française de Minéralogie et de Cristallographie, 1971, 94(1), 49. 24 Baddour-Hadjean R, Raekelboom E, Pereira-Ramos J P. Chemistry of Materials, 2006, 18(15), 3548. 25 Huang X M, Li Z W, Liu H, et al. Electrochimica Acta, 2022, 412, 140160. 26 Onodera S, Ikegami Y. Inorganic Chemistry, 1980, 19(3), 615. 27 Parker J C. Physical Review B, 1990, 42(5), 3164. 28 Li H Y, Wei C, Peng Z W, et al. Materials Letters, 2018, 220, 12. 29 He Z, Chen Z S, Meng W, et al. Journal of Energy Chemistry, 2016, 25(4), 720. 30 Simon P, Gogotsi Y. Nature Materials, 2008, 7(11), 845. 31 Li R, Xing F, Li T Y, et al. Energy Storage Materials, 2021, 38, 590. 32 Simon P, Burke A. The Electrochemical Society Interface, 2008, 17(1), 38. 33 Chmiola J, Yushin G, Gogotsi Y, et al. Science, 2006, 313(5794), 1760. 34 Takayama-Muromachi E, Kato K. Journal of Solid State Chemistry, 1987, 71(1), 274.