Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22050088-8    https://doi.org/10.11896/cldb.22050088
  无机非金属及其复合材料 |
核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料
黄贤敏1,2, 李紫薇1,*, 张晓妍1, 刘慧1,2, 高红艳1, 汪海2,*
1 伊犁师范大学化学与环境科学学院,新疆 伊宁 835000
2 中国地质大学(武汉)数学与物理学院,材料物理实验室,武汉 430079
V10O24·12H2O@ACFC with Core-shell Structure:a High Performance Symmetric Supercapacitor Electrode Material
HUANG Xianmin1,2, LI Ziwei1,*, ZHANG Xiaoyan1, LIU Hui1,2, GAO Hongyan1, WANG Hai2,*
1 School of Chemical and Environmental Science, Yili Normal University, Yining 835000, Xinjiang, China
2 Laboratory of Material Physics, School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, China
下载:  全 文 ( PDF ) ( 15711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器因功率密度高、循环寿命长等优点引起了众多学者的关注。为探索出一种低成本、易获得、高性能的电极材料,本工作以廉价易得的碳布为基材采用电化学刻蚀法使其活化,并以此为载体成功诱导了V2O5溶胶转化为凝胶,再经冷冻干燥处理获得了在活化碳布表面包覆有V10O24·12H2O超薄纳米片的复合材料,实现了在简易、温和的条件下制得具有核壳结构的电极材料。通过UV-Vis光谱揭示了这一吸附转化的过程,电化学活化的本质是在碳布上引入了含氧官能团且在表现出介孔特性的同时碳布的吸附性能也得到了增强。SEM、XRD结果表明该复合材料是以碳纤维为“内核”,以V10O24·12H2O超薄纳米片为“外壳”的核壳结构。电化学测试表明,当电流密度为1 A/g时,该复合材料的比容量为488 F/g;以电流密度为5 A/g对该复合材料进行长循环测试,可获得初始比容量为256 F/g,且在循环初期容量不断增加,在10 000次循环后,容量保持率为100%(相比4 000次以后),其展现出超长的循环稳定性;在功率密度为1 875 W/kg下,该复合材料仍可输出20.1 Wh/kg的能量密度。优异的电化学性能得益于该电极材料核壳结构的协同作用,正是这种核壳结构成功地将发生在ACFC-1.0上的双电层电容行为与发生在V10O24·12H2O超薄纳米片上的赝电容行为有机结合,为设计新的高性能超级电容器提供了可行方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄贤敏
李紫薇
张晓妍
刘慧
高红艳
汪海
关键词:  活化碳布  吸附  核壳结构  含氧官能团  V10O24·12H2O超薄纳米片  超级电容器    
Abstract: Supercapacitors with their high power density and long cycle life have attracted much attention. In order to engineer an electrode material with low-cost, easy to obtain and high-performance, cheap and easily available carbon fiber cloth is used as the substrate to activate itself by electrochemical etching in this work. And the actived carbon fiber cloth acting as the carrier successfully induces V2O5 sol to be converted into gel, and then on its surface obtains a composite material coated with V10O24·12H2O ultra-thin nanosheets through freeze-drying treatment. Finally, the electrode materials with core-shell structure are prepared under simple and mild conditions. UV-Vis spectroscopy was employed to reveal the process of this adsorption conversion. The essence of electrochemical activation is that oxygen containing functional groups are introduced into the carbon fiber cloth and its adsorption performance is enhanced while showing mesoporous characteristics. SEM and XRD results show that the composite has a core-shell structure with carbon fiber as the ‘core' and V10O24·12H2O ultra-thin nanosheets as the ‘shell'. Electrochemical measurements indicate that the specific capacity is 488 F/g at 1 A/g. While, the initial specific capacity of 256 F/g at 5 A/g is still being increased continuously at the beginning of the cycles within 4 000, from here until 10 000 cycles, the capacity retention could reach to 100%, showing the ulta-long life span. When the power density is 1 875 W/kg, the energy density of 20.1 Wh/kg can still be output. The excellent electrochemical performance benefits from the structural synergy of the electrode material. It is the core-shell structure that organically combines the electric double-layer capacitance behavior on ACFC-1.0 with the pseudo capacitance behavior on V10O24·12H2O ultra-thin nanos-heets, which provides a feasible scheme for the design of new high-performance supercapacitors.
Key words:  activated carbon fiber cloth    adsorption    core-shell structure    oxygen-containing functional groups    V10O24·12H2O ultra-thin nanosheets    supercapacitors
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB332  
  TB321  
  TM53  
基金资助: 国家自然科学基金青年基金(51802291);新疆维吾尔自治区高校科研计划重点项目(XJEDU2016I045);伊犁师范大学2020年研究生科研创新项目(YSD202017)
通讯作者:  *李紫薇,伊犁师范大学化学与环境科学学院教授,硕士研究生导师。2007年在苏州大学获分析化学专业硕士学位。目前主要从事环境分析和环境污染物去除方法的研究,以第一作者及通信作者在国内外学术期刊发表论文30余篇。yili92@163.com 汪海,中国地质大学(武汉)数学与物理学院副教授,硕士研究生导师。2011年毕业于华中师范大学物理学基地,2011—2016年硕博连读于华中师范大学物理科学与技术学院凝聚态物理专业,并于2015年赴美佐治亚理工学院交流一年。目前主要从事新能源储能材料与器件的研究,主持国家自然科学基金青年基金一项,中央高校科研业务一项,发表论文20余篇,包括Journal of Materials Chemistry A,Chemical Communications,Electrochimica Acta等。wanghai@cug.edu.cn   
作者简介:  黄贤敏,2016年6月毕业于湖北文理学院,并取得化学工程与工艺专业工学学士学位。2022年6月毕业于伊犁师范大学,分析化学专业;并于2020年7月至2022年5月期间在中国地质大学(武汉)数学与物理学院联合培养,从事新能源储能材料研究。
引用本文:    
黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
HUANG Xianmin, LI Ziwei, ZHANG Xiaoyan, LIU Hui, GAO Hongyan, WANG Hai. V10O24·12H2O@ACFC with Core-shell Structure:a High Performance Symmetric Supercapacitor Electrode Material. Materials Reports, 2023, 37(21): 22050088-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050088  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22050088
1 Libich J, Máca J, VondráK J, et al. Journal of Energy Storage, 2018, 17, 224.
2 Xing J J, Sun P P, Shi F N. Journal of Materials Science and Enginee-ring, 2022, 40(1), 160 (in Chinese).
邢锦娟, 孙平平, 史发年. 材料科学与工程学报, 2022, 40(1), 160.
3 Zhu Q C, Zhao D Y, Cheng M Y, et al. Advanced Energy Materials, 2019, 9(36), 1901081.
4 Wei F, Lv Y H, Zhang S Q, et al. Renewable Energy, 2021, 180, 683.
5 Huang S F, Zhu X L, Sarkar S, et al. APL Materials, 2019, 7(10), 100901.
6 Zhang S, Xiao S Y, Li D P, et al. Energy Storage Materials, 2022, 48, 172.
7 Wang W, Liu W Y, Zeng Y X, et al. Advanced Materials, 2015, 27(23), 3572.
8 Nie W Q, Sun J D, Xu S, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 981 (in Chinese).
聂文琪, 孙江东, 许帅, 等. 复合材料学报, 2022, 39(3), 981.
9 Jiang G S, Senthil R A, Sun Y Z, et al. Journal of Power Sources, 2022, 520, 230886.
10 Geioushy R A, Attia S Y, Mohamed S G, et al. Journal of Energy Sto-rage, 2022, 48, 104034.
11 Chen J W, Lee P S. Advanced Energy Materials, 2021, 11(6), 2003311.
12 Chang J L, Gao Z Y, Wang X R, et al. Electrochimica Acta, 2015, 157, 290.
13 Dai C C, Wan J F, Yang J, et al. Applied Surface Science, 2018, 444, 105.
14 Han X Y, Zhang Y F, Wan J, et al. Journal of Alloys and Compounds, 2020, 838, 155695.
15 Yao D, Ouyang Y, Jiao X Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(18), 6246.
16 Panigrahi K, Howli P, Chattopadhyay K K. Electrochimica Acta, 2020, 337, 135701.
17 Huang G, Wang Y, Zhang T Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 672.
18 Wang H Y, Deng J, Xu C M, et al. Energy Storage Materials, 2017, 7, 216.
19 Li X R, Jiang Y H, Wang P Z, et al. New Carbon Materials, 2020, 35(3), 232.
20 Hu F, Lin Y, Qiu Y, et al. Ceramics International, 2021, 47(5), 5968.
21 Di W L, Liu Y J, Song M M, et al. Analytical Instrumentation, 2019(3), 77 (in Chinese).
邸卫利, 刘月菊, 宋明明, 等. 分析仪器, 2019(3), 77.
22 Li H Y, Wei C, Wang L, et al. Journal of Materials Chemistry A, 2015, 3(45), 22892.
23 Cesbron F, Vachey H. Bulletin de la Société française de Minéralogie et de Cristallographie, 1971, 94(1), 49.
24 Baddour-Hadjean R, Raekelboom E, Pereira-Ramos J P. Chemistry of Materials, 2006, 18(15), 3548.
25 Huang X M, Li Z W, Liu H, et al. Electrochimica Acta, 2022, 412, 140160.
26 Onodera S, Ikegami Y. Inorganic Chemistry, 1980, 19(3), 615.
27 Parker J C. Physical Review B, 1990, 42(5), 3164.
28 Li H Y, Wei C, Peng Z W, et al. Materials Letters, 2018, 220, 12.
29 He Z, Chen Z S, Meng W, et al. Journal of Energy Chemistry, 2016, 25(4), 720.
30 Simon P, Gogotsi Y. Nature Materials, 2008, 7(11), 845.
31 Li R, Xing F, Li T Y, et al. Energy Storage Materials, 2021, 38, 590.
32 Simon P, Burke A. The Electrochemical Society Interface, 2008, 17(1), 38.
33 Chmiola J, Yushin G, Gogotsi Y, et al. Science, 2006, 313(5794), 1760.
34 Takayama-Muromachi E, Kato K. Journal of Solid State Chemistry, 1987, 71(1), 274.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[3] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[4] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[5] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[6] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[7] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[8] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[9] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[10] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[11] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[12] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[13] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[14] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[15] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed