Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 20120185-8    https://doi.org/10.11896/cldb.20120185
  无机非金属及其复合材料 |
蒸汽养护混凝土变形行为及开裂风险评估
王鹏刚*, 付华, 郭腾飞, 田砾, 赵铁军
青岛理工大学土木工程学院,山东青岛266033
Deformation Behavior and Cracking Risk Assessment of Steam-cured Concrete
WANG Penggang*, FU Hua, GUO Tengfei, TIAN Li, ZHAO Tiejun
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong,China
下载:  全 文 ( PDF ) ( 4284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过超声波法、劈裂抗拉试验、水化热试验以及收缩-温湿度一体化试验分别研究了蒸汽养护混凝土弹性模量、抗拉强度、水化规律以及收缩变形-温湿度变化规律。结果表明:蒸汽养护增大了混凝土的弹性模量与抗拉强度;高温提高了水泥净浆的水化速率与水化程度,蒸汽养护水泥净浆水化模型被成功建立;蒸养至拆模阶段,混凝土呈现“膨胀-收缩”的变化规律;拆模之后,蒸汽养护混凝土的变形以干燥收缩为主,建立的复掺粉煤灰与矿粉蒸汽养护混凝土拆模后的自收缩与总收缩一体化模型的计算值与试验数据吻合较好;建立的密封条件下拆模后蒸汽养护混凝土开裂评价模型可用于蒸汽养护混凝土开裂性定量评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏刚
付华
郭腾飞
田砾
赵铁军
关键词:  蒸汽养护  复掺粉煤灰与矿粉  水化模型  收缩模型  开裂评估    
Abstract: Through the ultrasonic method, split tensile test, the heat of hydration test and integrated shrinkage-temperature-relative humidity test, elastic modulus, tensile strength, hydration and shrinkage deformation-temperature-relative humidity were studied. Results indicated that steam curing increased the elastic modulus and tensile strength of concrete. High temperature promoted the hydration rate and hydration degree of cement paste. A steam-cured cement paste hydration model was proposed. From steam curing to demoulding stage, the concrete presented an ‘expansion-shrinkage' change law. However, the deformation of steam-cured concrete dominated by drying shrinkage after demoulding. An integrated model of auto-shrinkage and total shrinkage of steam-cured concrete mixed with fly ash and slag after demoulding was proposed. The calculated values of this model are in good agreement with the experimental data. Finally, a cracking evaluation model for steam-cured concrete after demoulding under sealed conditions was proposed. It can be used for quantitative evaluation of crack formation of steam-cured concrete.
Key words:  steam curing    mixed fly ash and slag    hydration model    shrinkage model    cracking assessment
发布日期:  2023-01-03
ZTFLH:  TU377.2  
基金资助: 十三五国家重点研发计划子课题:典型混凝土制品开裂风险与耐久性评估(2017YFB0310004-05);山东省重点研发计划:混凝土制品低能耗制造技术与示范应用(2019GSF110006);山东省“双一流”建设工程-土木
通讯作者:  wangpenggang007@163.com   
作者简介:  王鹏刚,青岛理工大学副教授、博士研究生导师。2014年6月博士毕业于青岛理工大学,2014—2016年在东南大学和江苏省建筑科学研究院从事博士后研究工作。2019—2020年于英国University College London作访问学者。主要从事混凝土耐久性、防护与修复研究。以第一/通讯作者发表SCI论文21篇、EI论文9篇。
引用本文:    
王鹏刚, 付华, 郭腾飞, 田砾, 赵铁军. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24): 20120185-8.
WANG Penggang, FU Hua, GUO Tengfei, TIAN Li, ZHAO Tiejun. Deformation Behavior and Cracking Risk Assessment of Steam-cured Concrete. Materials Reports, 2022, 36(24): 20120185-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120185  或          http://www.mater-rep.com/CN/Y2022/V36/I24/20120185
1 Gao X J, Li S X. Material Reports B:Research Papers, 2019, 33(1), 271(in Chinese).
高小建, 李双欣. 材料导报:研究篇, 2019, 33(1), 271.
2 Tan K F, Zhu J Z. Materials and Structures, 2017, 50(1), 1.
3 Ba M F, Qian C X, Guo X J, et al. Construction and Building Materials, 2011, 25(1), 123.
4 Geng J, Peng B, Sun J Y, et al. Journal of Building Materials, 2011, 14(1), 116(in Chinese).
耿健, 彭波, 孙家瑛, 等. 建筑材料学报, 2011, 14(1), 116.
5 Liu B, Shi J, Zhou F, et al. Construction and Building Materials, 2020, 256(3), 119426.
6 Zou C, Long G C, Zeng X H, et al. Construction and Building Materials, 2021, 282(12), 122629.
7 Bouziadi F, Boulekbache B, Hamrat M. Construction and Building Materials, 2016, 114, 40.
8 Jiang C, Yang Y, Yong W, et al. Construction and Building Materials, 2014, 61(3), 260.
9 Tu Y Q. Research on the influence factors for the shrinkage of reactive powder concrete. Master's Thesis, Beijing Jiaotong University, China, 2015 (in Chinese).
涂亚秋. 活性粉末混凝土收缩影响因素的研究. 硕士学位论文, 北京交通大学, 2015.
10 Wang X F, Zheng J L, Chao P F. Journal of China Univeisity of Mining and Technology, 2007, 36(6), 768(in Chinese).
王雪芳, 郑建岚, 晁鹏飞. 中国矿业大学学报, 2007, 36(6), 768.
11 Wang D X, Gao X Y, Zou W L, et al. Journal of Huazhong University of Science and Technology (Natural Science), 2019, 47(6), 92(in Chinese).
王东星, 高向雲, 邹维列, 等. 华中科技大学学报 (自然科学版), 2019, 47(6), 92.
12 Li B L, Huo B B, You N Q, et al. Journal of Southeast University(Natural Science), 2019, 49(6), 1144(in Chinese).
李保亮, 霍彬彬, 尤南乔, 等. 东南大学学报 (自然科学版), 2019, 49(6), 1144.
13 Xu G D. Studies on cracking behaviour of high volume slag and fly ash concrete at early age. Ph. D. Thesis, Southeast university, China, 2018 (in Chinese).
许国东. 大掺量工业废渣混凝土早期开裂行为研究. 博士学位论文, 东南大学, 2018.
14 Xu J, Mo R, Wang P G, et al. Frontiers in Materials. 2020, 7, 1.
15 Carette J, Staquet S. Cement and Concrte Composites, 2016, 73, 1.
16 Han S H, Kim J K. Cement and Concrete Research, 2004, 34(7), 1219.
17 Su A S. Study on early-age shrinkage performance and cracking tendency of high performance concrete. Ph. D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese).
苏安双. 高性能混凝土早期收缩性能及开裂趋势研究. 博士学位论文, 哈尔滨工业大学, 2008.
18 Wang P G. Influence of elevated temperature on the protective effectiveness of silance agent. Ph. D. Thesis, Qingdao University of Technology, China, 2010 (in Chinese).
王鹏刚. 火灾高温对混凝土硅烷防护效果影响的研究. 博士学位论文, 青岛理工大学, 2010.
19 Yin J, Zhou S Q. Journal of Changsha Railway University, 2001, 19(2), 25(in Chinese).
尹健, 周士琼. 长沙铁道学院学报, 2001, 19(2), 25.
20 Escalante-garcia J I, Sharp J H. Cement and Concrete Research, 1998, (28)9, 1259.
21 Jing Z W, Xu H Y, Wang P M, et al. Journal of the Chinese Ceramic Society, 2010, (38)9, 1702(in Chinese).
蒋正武, 徐海源, 王培铭, 等. 硅酸盐学报, 2010, (38)9, 1702.
22 Li X, Yan P Y. Journal of Central South University (Natural Science), 2010, 41(6), 2321(in Chinese).
李响, 阎培渝. 中南大学学报 (自然科学版), 2010, 41(6), 2321.
23 Standard B. Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings, 2004, pp.230.
24 Shen D J, Shi X, Zhu S, et al. Construction and Building Materials, 2016, 123, 317.
25 Shkolnik I E. Cement and Concrte Composites, 2008, 30(10), 1000.
26 Kanstard T, Hammer T A, et al. Materials and Structure, 2003, 36(4), 226.
27 Catette J, Staquet S. Cement and Concrte Composites, 2016, 73, 10.
28 Pane I, Hansen W. Materials Journal, 2002, 99(6), 534.
29 Schindler A K, Folliard K J. Materials Journal, 2005, 102(1), 24.
30 Wade S A, Nixon J M, Schindler A K, et al. Journal of Materials in Civil Engineering, 2010, 22(3), 214.
31 Dannhanser W. Journal of Chemical Education, 1971, 48(5), 329.
32 Gutsch A W. Properties of fresh concrete, experiments and modelling. Ph. D. Thesis, Braunschweig University of Technology, Germany, 1998.
33 Shao S S. Study on cracking mechanism of steam-cured concrete products. Master's Thesis, Qingdao University of Technology, China, 2020 (in Chinese).
邵爽爽. 蒸养混凝土制品开裂机理研究. 硕士学位论文, 青岛理工大学, 2020.
34 Jensen O M. Cement and Concrete Research, 1995, 25(1), 157.
35 Jensen O M, Hansen P F. Cement and Concrete Research, 1999, 29(4), 567.
36 Benta D P, Garboczo E J, Quenard D A. Modelling and Simulation in Materials Science and Engineering, 1998, 6(3), 211.
37 Zhao H T, Liu J P, Yin X L, et al. Construction and Building Materials, 2019, 215, 482.
38 Koniorcayk M, Gawin D. Construction and Building Materials, 2012, 36, 860.
39 Lura P, Jensen O M, Breugel K V. Cement and Concrete Research, 2003, 33(2), 223.
40 Powers T C, Brownyard T L. Journal Proceedings, 1946, 43(9), 101.
41 Zhang J, Hou D W. Construction and Building Materials, 2012, 29, 230.
42 Li H, Liu J P, Wang Y J, et al. Construction and Building Materials, 2015, 88(30), 84.
[1] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[2] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[3] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[4] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed