Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20100270-8    https://doi.org/10.11896/cldb.20100270
  高分子与聚合物基复合材料 |
热处理对木材吸湿吸水性的影响及其机理研究概述
高玉磊1, 徐康2, 詹天翼3, 江京辉4, 蒋佳荔4, 赵丽媛4, 吕建雄4,*
1 宁波大学潘天寿建筑与艺术设计学院,浙江 宁波 315211
2 中南林业科技大学材料科学与工程学院,长沙 410004
3 南京林业大学材料科学与工程学院,南京 210037
4 中国林业科学研究院木材工业研究所;木竹资源高效利用湖南省高校2011协同创新中心,北京 100091
Effects of Heat Treatment on Moisture Adsorption and Water Absorption of Wood and Underlying Occurrences: a Mini Review
GAO Yulei1, XU Kang2, ZHAN Tianyi3, JIANG Jinghui4, JIANG Jiali4, ZHAO Liyuan4, LYU Jianxiong4,*
1 Pan Tianshou College of Architecture, Art and Design, Ningbo University, Ningbo 315211, Zhejiang, China
2 College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
3 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
4 Research Institute of Wood Industry of Chinese Academy of Forestry; Hunan Collaborative Innovation Center for Effective Utilizing of Wood & Bamboo Resources, Beijing 100091, China
下载:  全 文 ( PDF ) ( 6003KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国木材资源供需矛盾的逐渐加剧,高效利用人工林木材资源已成为我国社会经济可持续发展的重大战略选择之一。我国人工林面积居世界首位,但木材材质较差,制约了其应用范围,因而通过改性处理提高其使用性能具有重要意义。热处理作为一项非常重要的木材改性技术,能够有效改善木材尺寸稳定性和耐久性等性能,已获得较为广泛的产业化应用。但不论将其应用于室内或户外,其产品自身的吸湿性和吸水性会导致使用性能受到影响。因此,为降低水分的不良影响,实现热处理木材的高效合理利用,研究热处理对木材吸湿吸水性的影响及其作用机理十分必要。本文总结、阐述了热处理木材吸湿性和吸水性变化规律及其主要影响因素与作用机理的研究现状及进展,并对热处理木材吸湿吸水性变化规律及其影响机理研究中存在的问题和发展思路进行了探讨,以期为优化木材热处理工艺、提高热处理木材质量及实现热处理木材尺寸稳定化的可控性提供借鉴和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高玉磊
徐康
詹天翼
江京辉
蒋佳荔
赵丽媛
吕建雄
关键词:  热处理木材  吸湿性  吸水性  化学组分  孔隙结构    
Abstract: The intensified contradiction between the supply and the demand of China's timber resources has fueled the emergence of a more efficient way of utilizing artificial woods, as one of the major strategic decisions, for its sustainable development in forestry. Although China owns the largest coverage of man-made forest globally, the poor quality of wood limits its application range. Hence, wood modification is of great significance for the desired performance and functionality as it can improve both physical properties and mechanical properties of the timber. Heat treatment, an important wood modification technology, which can effectively strengthen the dimensional stability and durability of wood, has been widely applied in industries. However, whether the products are used indoors or outdoors, the performance of heat-treated wood will still be affected due to its own water adsorption and absorption properties. It is essential to explore how thermal modification affects moisture adsorption and absorption properties, in order to further reduce the detrimental effects of moisture, and to ensure an efficient implementation. This paper elaborates and summarizes the research status and the progress of changes of moisture adsorption and water absorption properties in heat-treated wood, as well as the main influencing factors and mechanisms. Meanwhile, it also discusses some existing problems and future research directions, which is expected to provide references to the optimization of modification process, the improvement of quality and the control of dimension stabilization of modified wood.
Key words:  heat-treated wood    moisture adsorption    water absorption    chemical composition    pore structure
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  S781  
基金资助: 国家自然科学基金(31971591);湖南省自然科学基金(2020JJ5978);浙江省公益技术应用研究项目(LGG22C160002)
通讯作者:  *jianxiong@caf.ac.cn   
作者简介:  高玉磊,博士,讲师,现工作于宁波大学潘天寿建筑与艺术设计学院。2019年6月毕业于中国林业科学研究院,获得工学博士学位。主要研究方向为木材物理与干燥,发表学术论文10余篇。
吕建雄,研究员,博士研究生导师,国际木材科学院院士、国家杰出青年科学基金获得者、“新世纪百千万人才工程”国家级人选。1997年在加拿大不列颠哥伦比亚大学获博士学位,现任中国林科院木材工业研究所常务副所长、国家林业局木材科学与技术重点实验室主任。长期以来一直致力于木材科学与技术学科领域的研究工作,主要研究方向为木材物理与干燥、木材保护与改性。多年来先后主持或参加完成了国家“九五”攀登计划专项、国家“十五”、“十一五”、“十二五”科技支撑项目、国家重点基础研究(973)项目、国家重点研发计划项目、国家杰出青年科学基金、国家自然科学基金、国家林业公益性行业科研专项重大项目、国家科技基础条件平台项目、科技部国际科技合作专项、中日技术合作(JICA)项目、国际热带木材组织(ITTO)项目、中韩国际合作交流项目、中国-斯洛伐克政府间科技合作项目等课题研究50余项。在Holzforschung、Wood Science and Technology、Drying Technology、Wood and Fiber Science、Forest Products Journal、Canadian Journal of Forest Research、Journal of Wood Science和林业科学等国际国内核心期刊上发表期刊论文200余篇,获国家发明专利13件,出版专著8部。
引用本文:    
高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
GAO Yulei, XU Kang, ZHAN Tianyi, JIANG Jinghui, JIANG Jiali, ZHAO Liyuan, LYU Jianxiong. Effects of Heat Treatment on Moisture Adsorption and Water Absorption of Wood and Underlying Occurrences: a Mini Review. Materials Reports, 2022, 36(15): 20100270-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100270  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20100270
1 Li J P, Qian J, He Z B, et al. Journal of Northeast Forestry University, 2018, 46(4), 43(in Chinese).
李金朋, 钱京, 何正斌,等. 东北林业大学学报, 2018, 46(4), 43.
2 Zhan T Y, Kuai B B, Lyu C, et al. Journal of Forestry Engineering, 2019, 4(5), 34(in Chinese).
詹天翼, 蒯炳斌, 吕超,等. 林业工程学报, 2019, 4(5), 34.
3 Wang L Y. Study on wood crack propagation and fracture behavior. Ph.D. Thesis, Beijing Forestry University, China, 2002 (in Chinese).
王丽宇. 木材裂纹扩展及其断裂行为的研究.博士学位论文, 北京林业大学, 2002.
4 Lyu J X, Huang R F, Cao Y J, et al. Scientia Silvae Sinicae, 2012, 48(1), 126(in Chinese).
吕建雄, 黄荣凤, 曹永建,等. 林业科学, 2012, 48(1), 126.
5 Shi Q, Bao F C, Lyu J X, et al. Journal of Central South University of Forestry & Technology, 2011, 31(2), 109(in Chinese).
史蔷, 鲍甫成, 吕建雄,等. 中南林业科技大学学报, 2011, 31(2), 109.
6 Gu L B, Ding T, Jiang N. Journal of Forestry Engineering, 2019, 4(4), 1(in Chinese).
顾炼百, 丁涛, 江宁.林业工程学报, 2019, 4(4), 1.
7 Lyu J X, Jiang J H, Huang R F, et al. High temperature heat treatment technology and application of wood, Science Press, China, 2020 (in Chinese).
吕建雄, 江京辉, 黄荣凤,等. 木材高温热处理技术与应用, 科学出版社, 2020.
8 Hosseinpourpia R, Adamopoulos S, Holstein N, et al. Polymer Degradation & Stability, 2017, 138, 161.
9 Altgen M, Willems W, Hosseinpourpia R, et al. Polymer Degradation & Stability, 2018, 152, 244.
10 Inari G N, Petrissans M, Lambert J, et al. Surface & Interface Analysis, 2006, 38(10), 1336.
11 Esteves B M, Pereira H M. Bioresources, 2009, 4(1), 370.
12 Nuopponen M, Vuorinen T, Jämsä S, et al. Journal of Wood Chemistry & Technology, 2005, 24(1), 13
13 Kaygin B, Gunduz G, Aydemir D. Drying Technology, 2009, 27(1), 89.
14 Borrega M, Kärenlampi P P. European Journal of Wood & Wood Pro-ducts, 2010, 68(2), 233.
15 Zhan T, Sun F, Lyu C, et al. Holzforschung, 2019, 73(12), 1113.
16 Zauer M, Prinz C, Adolphs J, et al. Wood Science & Technology, 2018, 52, 957.
17 Tiemann H D. Lumber World Review, 1915, 28(7), 19.
18 Tjeerdsma B, Boonstra M, Militz H. In: The International Research Group On Wood Preservation, Section 4—Processes, 29th Annual Mee-ting. Maastricht, Netherlands, 1998.
19 Kamdem D P, Pizzi A, Jermannaud A. Holz als Roh-und Werkstoff, 2002, 60(1), 1.
20 Altgen M, Hofmann T, Militz H. Wood Science & Technology, 2016, 50(6), 1181.
21 Hill C A S. Wood modification: chemical, thermal and other processes, John Wiley & Sons, Hoboken, 2006, pp.99.
22 Jiang J, Lu J, Zhou Y, et al. Wood Science & Technology, 2014, 48(2), 253.
23 Wu G F, Wei C Y, Zeng J Q, et al. Chinese Agricultural Science Bulletin, 2011, 27(19), 44 (in Chinese).
巫国富, 韦春义, 曾俊钦, 等. 中国农学通报, 2011, 27(19), 44.
24 Li X J, Liu Y, Su H Z, et al. Practical Forestry Technology, 2008(10), 50(in Chinese).
李贤军, 刘元, 苏洪泽, 等. 林业科技通讯, 2008(10), 50.
25 Hoffmeyer P, Jensen S K, Jones D, et al. In: Proceedings of the first European Conference on wood modification: European Thematic Network for Wood Modification. Belgium, 2003, pp.177.
26 Cao J Z, Zhao G J. Journal of Beijing Forestry University, 1997(4), 26 (in Chinese).
曹金珍, 赵广杰. 北京林业大学学报, 1997(4), 26.
27 Ding T, Gu L B, Cai J B. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015(2), 143 (in Chinese).
丁涛, 顾炼百, 蔡家斌.南京林业大学学报(自然科学版), 2015(2), 143.
28 Jalaludin Z, Hill C A S, Xie Y J, et al. Wood Material Science & Engineering, 2010, 5(3-4), 194.
29 Hill C A S, Ramsay J, Laine K, et al. Journal of the Institute of Wood Science, 2013, 4(3), 191.
30 Olek W, Majka J, Czajkowski Ł. Holzforschung, 2013, 67(2), 183.
31 Gao X, Zhou F, Fu Z Y, et al. Journal of Forestry Engineering, 2018, 3(4), 25 (in Chinese).
高鑫, 周凡, 付宗营, 等. 林业工程学报, 2018, 3(4), 25.
32 Jalaludin Z, Hill C A S, Samsi H W, et al. Holzforschung, 2010, 64(6), 763.
33 Kymäläinen M, Rautkari L, Hill C A S. Journal of Materials Science, 2015, 50(23), 7673.
34 Kymäläinen M, Mlouka S B, Belt T, et al. Journal of Materials Science, 2017, 53(4), 3027.
35 Hill C A S, Keating B, Laine K, et al. Journal of Materials Science, 2012, 47(7), 3191.
36 Källbom S, Rautkari L, Wålinder M, et al. International Wood Products Journal, 2016, 7(3), 116.
37 Li X J, Fu F, Cai Z Y, et al. Journal of Central South University of Forestry & Technology, 2010, 30(6), 92 (in Chinese).
李贤军, 傅峰, 蔡智勇, 等. 中南林业科技大学学报, 2010, 30(6), 92.
38 Cao Y, Lu J, Jiang J. European Journal of Wood & Wood Products, 2011, 70(4), 441.
39 Militz H. In: International research group on wood preservation . Sweden, 2002, pp.1.
40 Esteves B, Marques A V, Domingos I, et al. Wood Science & Technology, 2007, 41(3), 193.
41 Esteves B, Domingos I, Pereira H. Forest Products Journal, 2007, 57(1), 47.
42 Esteves B, Graça J, Pereira H. Holzforschung, 2008, 62(3), 344.
43 Xing D. Quality evaluation and micro-mechanical properties study of biomas gas heat-treated wood, Ph.D. Thesis, Northeast Forestry University, China, 2016 (in Chinese).
邢东. 生物质燃气热处理木材品质与微观力学性能研究.博士学位论文, 东北林业大学, 2016.
44 Javed M A, Kekkonen P M, Ahola S, et al. Holzforschung, 2015, 69(7), 899.
45 Metsä-Kortelainen S, Antikainen T, Viitaniemi P. Holz als Roh-und Werkstoff, 2006, 64(3), 192.
46 Almeida G, Brito J O, Perré P. Holzforschung, 2009, 63(1), 80.
47 Kekkonen P M, Ylisassi A, Telkki V V. The Journal of Physical Chemistry C, 2014, 118(4), 2146.
48 Viitaniemi P, Jämsä S. Puun modifiointi lämpökäsittelyllä (Modification of wood with heat treatment), VTT Publications, Finland, 1996, pp.57.
49 Pétrissans M, Gérardin P, Bakali I E, et al. Holzforschung, 2003, 57(3), 301.
50 Hakkou M, Pétrissans M, Zoulalian A, et al. Polymer Degradation & Stability, 2005, 89(1), 1.
51 Hakkou M, Pétrissans M, Bakali I E, et al. Holzforschung, 2005, 59(1), 35.
52 Verena K, Samuel A, Ueli C, et al. Bauphysik, 2011, 33(6), 374.
53 Ahmed S A, Morén T. Wood and Fiber Science, 2012, 44(1), 85.
54 Kymäläinen M, Havimo M, Louhelainen J. Wood Material Science & Engineering, 2014, 9(3), 170.
55 Wang W. The Properties and characterization of thermally-modified wood in a combination with water repellent treatment. Ph.D. Thesis, Beijing Forestry University, China, 2015 (in Chinese).
王望. 防水剂/高温热处理复合改性木材的性能与表征.博士学位论文, 北京林业大学, 2015.
56 Pfriem A. Drvna Industrija, 2011, 62(4), 311.
57 Gao Y, Xu K, Peng H, et al. Applied Sciences, 2018, 9(1), 78.
58 Cao Y J. Properties and control theory for strength loss of steam heat-treatment wood. Ph.D. Thesis, Chinese Academy of Forestry, China, 2008 (in Chinese).
曹永建. 蒸汽介质热处理木材性质及其强度损失控制原理.博士学位论文, 中国林业科学研究院, 2008.
59 Cai S X, Wang X Z, Li Y J. Journal of Southwest Forestry University, 2019, 39(1), 166 (in Chinese).
蔡绍祥, 王新洲, 李延军.西南林业大学学报, 2019, 39(1), 166.
60 Fu Z Y, Zhou F, Gao X, et al. China Wood Industry, 2019, 33(6), 47 (in Chinese).
付宗营, 周凡, 高鑫, 等. 木材工业, 2019, 33(6), 47.
61 Huang R F, Lyu J X, Cao Y J, et al. Journal of Beijing Forestry University, 2010, 32(3), 155 (in Chinese).
黄荣凤, 吕建雄, 曹永建, 等. 北京林业大学学报, 2010, 32(3), 155.
62 Li J. Wood science (3rd Edition), Science Press, China, 2014, pp. 96 (in Chinese).
李坚.木材科学(第3版), 科学出版社, 2014, pp.96.
63 Wang Z. Study on Properties and Mechanism of Larch Wood Modifiedby Vacuum Heat Treatment. Ph.D. Thesis, Beijing Forestry University, China, 2017 (in Chinese).
王喆. 真空热处理落叶松材性变化规律及其机理研究.博士学位论文, 北京林业大学, 2017.
64 Nuopponen M, Vuorinen T, Jamsa S, et al. Journal of Wood Chemistry & Technology, 2004, 24(1), 13.
65 Tjeerdsma B F, Militz H. Holz als Roh- und Werkstoff, 2005, 63(2), 102.
66 Pizzi A, Stephanou A, Boonstra M J, et al. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1994, 48(s1), 91.
67 Boonstra M J, Acker J V, Tjeerdsma B F, et al. Annals of Forest Science, 2007, 64(7), 679.
68 Jiang J H. Studies on the mechanism and properties of superheated steam heat-treated oak wood. Ph.D. Thesis, Chinese Academy of Forestry, China, 2013 (in Chinese).
江京辉. 过热蒸汽处理柞木性质变化规律及机理研究.博士学位论文, 中国林业科学研究院, 2013.
69 Kollmann F, Schneider A. Holz als Roh-und Werkstoff, 1963, 21, 77.
20100270-770 Nikolov S, Encev E. Nauc Trud Lesoteh, 1967, 14(3), 71.
71 D'Jakonov K, Konepleva T. Arhangel'sk, 1967, 10(1), 112.
72 Li M Y. Effects of steam heat treatment on the main chemical components and their structure of teak wood. Masters Thesis, Chinese Academy of Forestry, China, 2015 (in Chinese).
李明玉. 热处理对柚木木材主要化学组分及其结构的影响.硕士学位论文, 中国林业科学研究院, 2015.
73 Cai S X, Li K, Qin S S, et al. Journal of Southwest Forestry University, 2018, 38(1), 223 (in Chinese).
蔡绍祥, 李康, 秦韶山, 等.西南林业大学学报, 2018, 38(1), 223.
74 Sikora A, Kacˇík F, Gaff M, et al. Journal of Wood Science, 2018, 64(4), 406.
75 Shimizu K, Teratani F, Hashi M, et al. Mokuzai Gakkaishi, 1972, 18(2), 79.
76 Zaman A, Alén R, Kotilainen R. Wood & Fiber Science, 2000, 32(2), 138.
77 Bekhta P, Niemz P. Holzforschung, 2003, 57(5), 539.
78 Gündüz G, Korkut S, Korkut D S. Bioresource Technology, 2008, 99(7), 2275.
79 Garcia R A, Carvalho A M D, Latorraca J, et al. Wood Science & Technology, 2012, 46(1-3), 41.
80 Phuong L X, Takayama M, Shida S, et al. Holzforschung, 2007, 61(5), 488.
81 Phuong L X, Shida S, Saito Y, et al. Wood Preservation, 2006, 32(1), 7.
82 Guo J, Song K, Salmén L, et al. Carbohydrate Polymers, 2015, 115, 207.
83 Everett D H. Pure and Applied Chemistry, 1972, 31(4), 577.
84 Sing K S W. Pure and Applied Chemistry, 1985, 57(4), 603.
85 Rouquerol J, Avnir D, Fairbridge C W, et al. Pure and Applied Chemistry, 1994, 66, 1739.
86 Wang Z, Wang X M. Scientia Silvae Sinicae, 2014, 50(10), 123 (in Chinese).
王哲, 王喜明.林业科学, 2014, 50(10), 123.
87 Yin J, Song K, Lu Y, et al. Wood Science & Technology, 2015, 49(5), 987.
88 Kojiro K, Miki T, Sugimoto H, et al. Journal of Wood Science, 2010, 56(2), 107.
89 Östlund Å, Köhnke T, Nordstierna L, et al. Cellulose, 2010, 17(2), 321.
90 Singh A P, Singh T, Rickard C L. Micron, 2010, 41(3), 263.
91 Grigsby W J, Kroese H, Dunningham E A. Wood Science & Technology, 2013, 47(4), 737.
92 Peng L M, Wang D, Fu F, et al. Wood Research, 2015, 60(6), 857.
93 Junghans K, Niemz P, Bächle F. European Journal of Wood and Wood Products, 2005, 63(3), 243.
94 Windeisen E, Strobel C, Wegener G. Wood Science and Technology, 2007, 41(6), 523.
95 Olek W, Bonarski J T. Holzforschung, 2014, 68(6), 721.
96 Pfriem A, Zauer M, Wagenführ A. Holzforschung, 2009, 63(1), 94.
97 Zauer M, Pfriem A, Wagenführ A. Wood Science and Technology, 2013, 47(6), 1197.
98 Zauer M, Kretzschmar J, Groβmann L, et al. Wood Science and Technology, 2014, 48(1), 177.
99 Zauer M, Hempel S, Pfriem A, et al. Wood Science and Technology, 2014, 48(6), 1229.
100 Zauer M, Meissner F, Plagge R, et al. Holzforschung, 2015, 70(2), 137.
101 Rautkari L, Curling S, Jalaludin Z, et al. Journal of Materials Science, 2013, 48(18), 6352.
102 Stamm A J. Industrial & Engineering Chemistry, 1956, 48(3), 413.
103 Tjeerdsma B F, Boonstra M, Pizzi A, et al. Holz als Roh-und Werkstoff, 1998, 56(3), 149.
104 Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions, Walter de Gruyter, Berlin, 1989, pp.613.
105 Awoyemi L, Jones I P. Wood Science & Technology, 2011, 45(2), 261.
106 Kocaefe D, Poncsak S, Doré G, et al. Holz als Roh-und Werkstoff, 2008, 66(5), 355.
107 Yue K, Song X, Jiao X, et al. Wood and Fiber Science: Journal of the Society of Wood Science and Technology, 2020, 52(2), 152.
108 Yue K, Song X L, Jiao X K, et al. Scientia Silvae Sinicae, 2020, 56(4), 131(in Chinese).
岳孔, 宋旭磊, 焦学凯, 等. 林业科学, 2020, 56(4), 131.
109 Wang M L, Shi L, Sun Z B, et al. China Wood-Based Panels, 2020, 27(12), 18(in Chinese).
王梦蕾, 石林, 孙照斌, 等. 中国人造板, 2020, 27(12), 18.
[1] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[2] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[3] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[4] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[5] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[6] 陶柳实, 李娜, 张世超, 王华, 潘传才, 艾兵, 王春朋. Al(H2PO4)3/Al2O3复合硬质材料吸湿改性研究[J]. 材料导报, 2021, 35(z2): 94-96.
[7] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[8] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[9] 马衍轩, 徐亚茜, 于霞, 赵飞, 李梦瑶, 张鹏, 彭帅. 泡沫混凝土的负泊松比设计与静载力学特性研究[J]. 材料导报, 2021, 35(24): 24068-24074.
[10] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[11] 马砺, 刘西西, 周莎莎, 于文聪, 刘尚明, 黄霄. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177.
[12] 张楠. P(AN-co-DAC)/mt-PSA共混物的吸湿性研究[J]. 材料导报, 2020, 34(Z1): 548-551.
[13] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[14] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[15] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed