Research Progress on the Role of Yttrium in Hypoeutectic Al-Si Alloys
LIU Shanguang1,2,*, YU Xiuyong3, MAO Guoling4, LI Dakui1,2, LU Zheng1,2, GAO Wenli4
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China 3 The First Company of China Eighth Engineering Division Co., Ltd., Jinan 250000, China 4 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract: Due to excellent casting properties and good mechanical properties, hypoeutectic Al-Si alloy is widely used, especially suitable for the production of large thin-walled complex structure castings, such as fuel shell, engine cylinder liner, etc. The further development of modern industry puts forward higher requirements for the comprehensive mechanical properties of hypoeutectic Al-Si alloys, and it is urgent to improve the comprehensive mechanical properties of hypoeutectic Al-Si alloys. Improving microstructure is a common method to improve the alloy's comprehensive mechanical properties. The microstructure of hypoeutectic Al-Si alloy includes primary α-Al, eutectic phase (including eutectic Al and eutectic Si), impurity phases (such as Fe rich phase), etc. The eutectic Si is a thick plate, which is easy to lead to stress concentration and failure during the service process of alloy parts.Though modification, the morphology of eutectic Si was changed into wheat ear and fiber with small stress concentration, can significantly improve comprehensive mechanical properties. Therefore, many scholars have been engaged in the study of modified eutectic Si. Chemical modification of eutectic Si is simple and cheap. One or several chemical substances are added during the alloy melting process to change the nucleation and growth mode of eutectic Si and change its morphology. In recent years, many scholars have been looking for a more suitable eutectic Si modifier for hypoeutectic Al-Si alloys, and have achieved fruitful results. Na and Sr are used earlier and widely, and Sb is also a common modifier. However, they have great shortcomings in industrial use, such as Na volatilizes easily and pollutes the environment, Sr easily makes the alloy melt aspirate, resulting in porosity and oxide inclusion in the aluminum matrix, and Sb is harmful to the human body with heavy use. Many researches results show that Y is an effective eutectic Si modifier. While in addition to modified eutectic Si, Y also affects other microstructures of hypoeutectic Al-Si alloy, such as primary α-Al and Fe rich impurities. To make more effective use of Y and promote the industrial application of Y in hypoeutectic Al-Si alloys, the role of Y and Y coupled with other factors in hypoeutectic Al-Si alloys were reviewed, including the eutectic Si modification, the effects on primary α-Al and the mechanism of eutectic Si modification. Meanwhile, the problems needing attention in the follow-up researches were described, and the future development direction was proposed.
刘闪光, 虞秀勇, 毛郭灵, 李大奎, 陆政, 高文理. 钇在亚共晶铝硅合金中的作用研究进展[J]. 材料导报, 2022, 36(15): 20110271-7.
LIU Shanguang, YU Xiuyong, MAO Guoling, LI Dakui, LU Zheng, GAO Wenli. Research Progress on the Role of Yttrium in Hypoeutectic Al-Si Alloys. Materials Reports, 2022, 36(15): 20110271-7.
1 Cao L Y, Chen S Y, Wang J Z. Journal of Liaoning Institute of Technology (Natural Sciences), 2000, 20(4), 1 (in Chinese). 曹丽云, 陈淑英, 王建中.辽宁工学院学报(自然科学版), 2000, 20(4), 1. 2 Gong J S, Li J M, Li R Y, et al. Journal of Hunan University (Natural Sciences), 1982, 9(3), 62 (in Chinese). 龚建森, 李建明, 李熔元, 等.湖南大学学报(自然科学版), 1982, 9(3), 62. 3 Xiong M. Hot Working Technology, 2014(20), 149 (in Chinese). 熊梅.热加工工艺, 2014(20), 149. 4 Xu C, Xiao W, Zheng R, et al. Materials & Design, 2015, 88, 485. 5 Guo H L, Yue X J. Hot Working Technology, 2016(6), 139 (in Chinese). 郭洪亮, 岳学杰.热加工工艺, 2016(6), 139. 6 Xiang J B, Wang C M, Chen K Q, et al. Chinese Journal of Vacuum Science and Technology, 2019, 39(6), 513 (in Chinese). 向峻伯, 王从明, 陈凯镔, 等. 真空科学与技术学报, 2019, 39(6), 513. 7 Xiao X P, Yu Y L, Wang Y N. Materials for Mechanical Engineering, 2011, 35(5), 93 (in Chinese). 肖心萍, 于彦龙, 王亚楠. 机械工程材料, 2011, 35(5), 93. 8 Yan J M, Li P, Zuo X Q, et al. Materials Reports A: Review Papers, 2020, 34(5), 9152 (in Chinese). 闫敬明, 黎平, 左孝青, 等. 材料导报:综述篇, 2020, 34(5), 9152. 9 Li H J, Chen J T, Hu H F. Materials for Mechanical Engineering, 2011(3), 22. (in Chinese). 李华基, 陈俊桃, 胡慧芳. 机械工程材料, 2011(3), 22. 10 Zhou L H. Materials for Mechanical Engineering, 1987(3), 21 (in Chinese). 周龙华. 机械工程材料, 1987(3), 21. 11 Ren Z W, Luo B H, Zheng Y Y, et al. Materials Reports B: Review Papers, 2019, 33(9), 3072 (in Chinese). 任智炜, 罗兵辉, 郑亚亚, 等. 材料导报:研究篇, 2019, 33(9), 3072. 12 Qu M, Tang J G, Ye L Y, et al. Materials Reports B: Review Papers, 2020, 34(2), 2083 (in Chinese). 瞿猛, 唐建国, 叶凌英, 等. 材料导报, 2020, 34(2), 2083. 13 Zheng L, Yongmei H U. Rare Matals, 2008, 27(5), 536. 14 Zheng C G, Yao L K, Zhang Q Y. Acta Metallurgica Sinica, 1982(6), 29 (in Chinese). 郑朝贵, 姚连克, 张启运. 金属学报, 1982(6), 29. 15 Li D Y, Gao W L. Hot Working Technology, 2017(23), 86 (in Chinese). 李登元, 高文理. 热加工工艺, 2017(23), 86. 16 Wan B B, Chen W P, Liu L S, et al. Materials Science and Engineering: A, 2016, 666, 165. 17 Li B, Wang H, Jie J, et al. Materials & Design, 2011, 32(3), 1617. 18 Knuutinen A, Nogita K, Mcdonald S D, et al. Journal of Light Metals, 2001, 1(4), 229. 19 Li B. Journal of Wuhan University of Technology, 2009, S1, 47. 20 Li Q, Li B, Li J, et al. Materials Science & Engineering A, 2018, 722(11), 47. 21 Sheng M, Tao Z, Jia P, et al. JOM, 2015, 67(2), 330. 22 Li B. Modification evolution of eutectic silicon in AlSi7Mg Alloy and micro-mechanism. Ph.D. Thesis, Harbin Institute of Technology, 2011 (in Chinese). 李豹. AlSi7Mg合金共晶硅变质规律及其微观机制. 博士学位论文, 哈尔滨工业大学, 2011. 23 Lu Y L, Yu X J, Li X C, et al. Foundry Technology, 2015, 36(10), 2415 (in Chinese). 卢雅琳, 于小健, 李兴成, 等. 铸造技术, 2015, 36(10), 2415. 24 Yu S, Jin Y, Xiong W, et al. Journal of Rare Earths, 2013, 31(2), 198. 25 Zhang W D, Yang J, Liu Y, et al. Transactions of Nonferrous Metals So-ciety of China, 2013, 23(7), 1855 (in Chinese). 张文达, 杨晶, 刘云, 等. 中国有色金属学报, 2013, 23(7), 1855. 26 Mao G, Yan H, Zhu C, et al. Journal of Alloys and Compounds, 2019, 806, 909. 27 Li Q, Zhao S, Li B, et al. Materials Research Express, 2019, 6(10), 106525. 28 Zhang J L. Hot Working Technology, 2019, 48(3), 109 (in Chinese). 张建林. 热加工工艺, 2019, 48(3), 109. 29 Mao G, Liu S, Wu Z, et al. Materials Letters, 2020, 271, 127795. 30 Jie J C. Effect of yttrium element on microstructure and mechanical pro-perties of Zl101A Alloy. Master's Thesis, Harbin Institute of Technology, China,2008 (in Chinese). 接金川. 钇元素对ZL101A合金组织和性能的影响. 硕士学位论文. 哈尔滨工业大学, 2008. 31 Jia P, Hu X, Zhang J, et al. Materials Research Express, 2019, 6, 16538. 32 Yu X J, Ji W X, Qian C H, et al. Materials Science and Technology, 2021(3), 49 (in Chinese). 于小健,吉卫喜,钱陈豪, 等.材料科学与工艺, 2021(3), 49. 33 Chen Z Q, Jia J Y, Hu W X, et al. Foundry, 2020, 69(4), 367 (in Chinese). 陈志强, 贾锦玉, 胡文鑫,等. 铸造, 2020, 69(4), 367. 34 Li Q, Li B, Liu J, et al. International Journal of Metalcasting, 2019, 13(2), 367. 35 He B, Qin M, Huang P, et al. Special-cast and Non-ferrous Alloys, 2017, 37(12), 1385 (in Chinese). 何兵, 覃铭, 黄蓓,等. 特种铸造及有色合金, 2017, 37(12), 1385. 36 Huang P W, Zhang M X, Li H Z, et al. Hunan Nonferrous Metals, 2006, 22(5), 38 (in Chinese). 黄佩武, 张新明, 李慧中,等. 湖南有色金属, 2006, 22(5), 38. 37 He B, Qin M, Yang T C, et al. Foundry Technology, 2017(4), 60 (in Chinese). 何兵, 覃铭, 杨途才,等. 铸造技术, 2017(4), 60. 38 Wei Z, Lei Y, Yan H, et al. 稀土学报(英文版), 2019, 37(6), 659. 39 Kang H S, Yoon W Y, Kim K H, et al. Materials Science and Enginee-ring: A, 2007, 449-451, 334. 40 De-Giovanni M, Alam T, Banerjee R, et al. JOM, 2018, 70(9), 1. 41 Nogita K, Knuutinen A, Mcdonald S D, et al. Journal of Light Metals, 2001, 1, 219.