Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20110271-7    https://doi.org/10.11896/cldb.20110271
  金属与金属基复合材料 |
钇在亚共晶铝硅合金中的作用研究进展
刘闪光1,2,*, 虞秀勇3, 毛郭灵4, 李大奎1,2, 陆政1,2, 高文理4
1 中国航发北京航空材料研究院,北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心,北京 100095
3 中建八局第一建设有限公司,济南 250000
4 湖南大学材料科学与工程学院,长沙 410082
Research Progress on the Role of Yttrium in Hypoeutectic Al-Si Alloys
LIU Shanguang1,2,*, YU Xiuyong3, MAO Guoling4, LI Dakui1,2, LU Zheng1,2, GAO Wenli4
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3 The First Company of China Eighth Engineering Division Co., Ltd., Jinan 250000, China
4 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 6632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亚共晶Al-Si合金具有优异的铸造工艺性能和良好的力学性能,应用广泛,尤其适合大型薄壁复杂结构铸件的生产,比如燃油壳体、发动机缸套等。现代工业的进一步发展对亚共晶Al-Si合金的综合力学性能提出了更高的要求,提高亚共晶Al-Si合金的综合力学性能迫在眉睫。
改善合金的组织是提高合金综合力学性能常用的一种方法。亚共晶Al-Si合金的组织包括初生α-Al、共晶相(包括共晶Al和共晶Si)、杂质相(如富Fe相)等,其中共晶Si呈粗大板片状,在合金部件服役过程中易导致应力集中而使部件失效。通过变质处理,将共晶Si形貌变质为应力集中小的麦穗状、纤维状等,能显著提高Al-Si合金的综合力学性能。因此,很多学者一直在从事变质共晶Si的研究。化学变质共晶Si操作简单、价格低廉,即在合金熔炼过程中加入一种或几种化学物质,改变共晶Si形核和生长的方式,从而改变其形貌。近年来,很多学者一直在寻找更合适的亚共晶Al-Si合金共晶Si变质剂,并取得了丰硕的成果。
Na和Sr是应用比较早且十分广泛的变质剂,Sb也是一种常见的变质剂,但它们在工业化使用过程中都有较大的缺点,如Na易挥发、污染环境等,Sr易使合金熔体吸气而导致气孔和氧化夹杂,Sb大量使用对人体有害。
大量研究表明,Y是一种有效的共晶Si变质剂,但除了对共晶Si的变质作用,Y对亚共晶Al-Si合金中的其他组织也有影响,如初生α-Al、富Fe杂质相等。为了更加有效地利用Y并促进Y在亚共晶Al-Si合金中的工业化使用,本文对Y及Y与其他因素耦合在亚共晶Al-Si合金中的作用进行了综述,包括其对共晶Si的变质作用、对初生α-Al的影响及共晶Si的变质机理等,同时对后续研究中需要注意的问题进行了阐述并对未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘闪光
虞秀勇
毛郭灵
李大奎
陆政
高文理
关键词:  亚共晶铝硅合金  钇元素  共晶硅  初生α-Al    
Abstract: Due to excellent casting properties and good mechanical properties, hypoeutectic Al-Si alloy is widely used, especially suitable for the production of large thin-walled complex structure castings, such as fuel shell, engine cylinder liner, etc. The further development of modern industry puts forward higher requirements for the comprehensive mechanical properties of hypoeutectic Al-Si alloys, and it is urgent to improve the comprehensive mechanical properties of hypoeutectic Al-Si alloys.
Improving microstructure is a common method to improve the alloy's comprehensive mechanical properties. The microstructure of hypoeutectic Al-Si alloy includes primary α-Al, eutectic phase (including eutectic Al and eutectic Si), impurity phases (such as Fe rich phase), etc. The eutectic Si is a thick plate, which is easy to lead to stress concentration and failure during the service process of alloy parts.Though modification, the morphology of eutectic Si was changed into wheat ear and fiber with small stress concentration, can significantly improve comprehensive mechanical properties. Therefore, many scholars have been engaged in the study of modified eutectic Si. Chemical modification of eutectic Si is simple and cheap. One or several chemical substances are added during the alloy melting process to change the nucleation and growth mode of eutectic Si and change its morphology. In recent years, many scholars have been looking for a more suitable eutectic Si modifier for hypoeutectic Al-Si alloys, and have achieved fruitful results.
Na and Sr are used earlier and widely, and Sb is also a common modifier. However, they have great shortcomings in industrial use, such as Na volatilizes easily and pollutes the environment, Sr easily makes the alloy melt aspirate, resulting in porosity and oxide inclusion in the aluminum matrix, and Sb is harmful to the human body with heavy use.
Many researches results show that Y is an effective eutectic Si modifier. While in addition to modified eutectic Si, Y also affects other microstructures of hypoeutectic Al-Si alloy, such as primary α-Al and Fe rich impurities. To make more effective use of Y and promote the industrial application of Y in hypoeutectic Al-Si alloys, the role of Y and Y coupled with other factors in hypoeutectic Al-Si alloys were reviewed, including the eutectic Si modification, the effects on primary α-Al and the mechanism of eutectic Si modification. Meanwhile, the problems needing attention in the follow-up researches were described, and the future development direction was proposed.
Key words:  hypoeutectic Al-Si alloys    yttrium element    eutectic silicon    primary α-Al
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51474101)
通讯作者:  *liusg621@126.com   
作者简介:  刘闪光,2016年毕业哈尔滨工业大学,获工学博士学位,2018年北京航空材料研究院博士后出站,现就职于北京航空材料研究院,主要从事铸造铝合金材料及工艺研究。发表学术论文20余篇,授权国家发明专利2项。
引用本文:    
刘闪光, 虞秀勇, 毛郭灵, 李大奎, 陆政, 高文理. 钇在亚共晶铝硅合金中的作用研究进展[J]. 材料导报, 2022, 36(15): 20110271-7.
LIU Shanguang, YU Xiuyong, MAO Guoling, LI Dakui, LU Zheng, GAO Wenli. Research Progress on the Role of Yttrium in Hypoeutectic Al-Si Alloys. Materials Reports, 2022, 36(15): 20110271-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110271  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20110271
1 Cao L Y, Chen S Y, Wang J Z. Journal of Liaoning Institute of Technology (Natural Sciences), 2000, 20(4), 1 (in Chinese).
曹丽云, 陈淑英, 王建中.辽宁工学院学报(自然科学版), 2000, 20(4), 1.
2 Gong J S, Li J M, Li R Y, et al. Journal of Hunan University (Natural Sciences), 1982, 9(3), 62 (in Chinese).
龚建森, 李建明, 李熔元, 等.湖南大学学报(自然科学版), 1982, 9(3), 62.
3 Xiong M. Hot Working Technology, 2014(20), 149 (in Chinese).
熊梅.热加工工艺, 2014(20), 149.
4 Xu C, Xiao W, Zheng R, et al. Materials & Design, 2015, 88, 485.
5 Guo H L, Yue X J. Hot Working Technology, 2016(6), 139 (in Chinese).
郭洪亮, 岳学杰.热加工工艺, 2016(6), 139.
6 Xiang J B, Wang C M, Chen K Q, et al. Chinese Journal of Vacuum Science and Technology, 2019, 39(6), 513 (in Chinese).
向峻伯, 王从明, 陈凯镔, 等. 真空科学与技术学报, 2019, 39(6), 513.
7 Xiao X P, Yu Y L, Wang Y N. Materials for Mechanical Engineering, 2011, 35(5), 93 (in Chinese).
肖心萍, 于彦龙, 王亚楠. 机械工程材料, 2011, 35(5), 93.
8 Yan J M, Li P, Zuo X Q, et al. Materials Reports A: Review Papers, 2020, 34(5), 9152 (in Chinese).
闫敬明, 黎平, 左孝青, 等. 材料导报:综述篇, 2020, 34(5), 9152.
9 Li H J, Chen J T, Hu H F. Materials for Mechanical Engineering, 2011(3), 22. (in Chinese).
李华基, 陈俊桃, 胡慧芳. 机械工程材料, 2011(3), 22.
10 Zhou L H. Materials for Mechanical Engineering, 1987(3), 21 (in Chinese).
周龙华. 机械工程材料, 1987(3), 21.
11 Ren Z W, Luo B H, Zheng Y Y, et al. Materials Reports B: Review Papers, 2019, 33(9), 3072 (in Chinese).
任智炜, 罗兵辉, 郑亚亚, 等. 材料导报:研究篇, 2019, 33(9), 3072.
12 Qu M, Tang J G, Ye L Y, et al. Materials Reports B: Review Papers, 2020, 34(2), 2083 (in Chinese).
瞿猛, 唐建国, 叶凌英, 等. 材料导报, 2020, 34(2), 2083.
13 Zheng L, Yongmei H U. Rare Matals, 2008, 27(5), 536.
14 Zheng C G, Yao L K, Zhang Q Y. Acta Metallurgica Sinica, 1982(6), 29 (in Chinese).
郑朝贵, 姚连克, 张启运. 金属学报, 1982(6), 29.
15 Li D Y, Gao W L. Hot Working Technology, 2017(23), 86 (in Chinese).
李登元, 高文理. 热加工工艺, 2017(23), 86.
16 Wan B B, Chen W P, Liu L S, et al. Materials Science and Engineering: A, 2016, 666, 165.
17 Li B, Wang H, Jie J, et al. Materials & Design, 2011, 32(3), 1617.
18 Knuutinen A, Nogita K, Mcdonald S D, et al. Journal of Light Metals, 2001, 1(4), 229.
19 Li B. Journal of Wuhan University of Technology, 2009, S1, 47.
20 Li Q, Li B, Li J, et al. Materials Science & Engineering A, 2018, 722(11), 47.
21 Sheng M, Tao Z, Jia P, et al. JOM, 2015, 67(2), 330.
22 Li B. Modification evolution of eutectic silicon in AlSi7Mg Alloy and micro-mechanism. Ph.D. Thesis, Harbin Institute of Technology, 2011 (in Chinese).
李豹. AlSi7Mg合金共晶硅变质规律及其微观机制. 博士学位论文, 哈尔滨工业大学, 2011.
23 Lu Y L, Yu X J, Li X C, et al. Foundry Technology, 2015, 36(10), 2415 (in Chinese).
卢雅琳, 于小健, 李兴成, 等. 铸造技术, 2015, 36(10), 2415.
24 Yu S, Jin Y, Xiong W, et al. Journal of Rare Earths, 2013, 31(2), 198.
25 Zhang W D, Yang J, Liu Y, et al. Transactions of Nonferrous Metals So-ciety of China, 2013, 23(7), 1855 (in Chinese).
张文达, 杨晶, 刘云, 等. 中国有色金属学报, 2013, 23(7), 1855.
26 Mao G, Yan H, Zhu C, et al. Journal of Alloys and Compounds, 2019, 806, 909.
27 Li Q, Zhao S, Li B, et al. Materials Research Express, 2019, 6(10), 106525.
28 Zhang J L. Hot Working Technology, 2019, 48(3), 109 (in Chinese).
张建林. 热加工工艺, 2019, 48(3), 109.
29 Mao G, Liu S, Wu Z, et al. Materials Letters, 2020, 271, 127795.
30 Jie J C. Effect of yttrium element on microstructure and mechanical pro-perties of Zl101A Alloy. Master's Thesis, Harbin Institute of Technology, China,2008 (in Chinese).
接金川. 钇元素对ZL101A合金组织和性能的影响. 硕士学位论文. 哈尔滨工业大学, 2008.
31 Jia P, Hu X, Zhang J, et al. Materials Research Express, 2019, 6, 16538.
32 Yu X J, Ji W X, Qian C H, et al. Materials Science and Technology, 2021(3), 49 (in Chinese).
于小健,吉卫喜,钱陈豪, 等.材料科学与工艺, 2021(3), 49.
33 Chen Z Q, Jia J Y, Hu W X, et al. Foundry, 2020, 69(4), 367 (in Chinese).
陈志强, 贾锦玉, 胡文鑫,等. 铸造, 2020, 69(4), 367.
34 Li Q, Li B, Liu J, et al. International Journal of Metalcasting, 2019, 13(2), 367.
35 He B, Qin M, Huang P, et al. Special-cast and Non-ferrous Alloys, 2017, 37(12), 1385 (in Chinese).
何兵, 覃铭, 黄蓓,等. 特种铸造及有色合金, 2017, 37(12), 1385.
36 Huang P W, Zhang M X, Li H Z, et al. Hunan Nonferrous Metals, 2006, 22(5), 38 (in Chinese).
黄佩武, 张新明, 李慧中,等. 湖南有色金属, 2006, 22(5), 38.
37 He B, Qin M, Yang T C, et al. Foundry Technology, 2017(4), 60 (in Chinese).
何兵, 覃铭, 杨途才,等. 铸造技术, 2017(4), 60.
38 Wei Z, Lei Y, Yan H, et al. 稀土学报(英文版), 2019, 37(6), 659.
39 Kang H S, Yoon W Y, Kim K H, et al. Materials Science and Enginee-ring: A, 2007, 449-451, 334.
40 De-Giovanni M, Alam T, Banerjee R, et al. JOM, 2018, 70(9), 1.
41 Nogita K, Knuutinen A, Mcdonald S D, et al. Journal of Light Metals, 2001, 1, 219.
[1] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[2] 王研,怯喜周,王晓璐,钱炜,赵玉涛. Er对原位ZrB2/A356.2复合材料组织与性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 107-110.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed