Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22172-22177    https://doi.org/10.11896/cldb.20080018
  高分子与聚合物基复合材料 |
淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试
马砺, 刘西西, 周莎莎, 于文聪, 刘尚明, 黄霄
西安科技大学安全科学与工程学院,西安 710054
Preparation and Performance Test of Starch-based Grafted Sodium Acrylate Composite Super Absorbent Resin Material
MA Li, LIU Xixi, ZHOU Shasha, YU Wencong, LIU Shangming, HUANG Xiao
College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 2762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以丙烯酸和可溶性淀粉为主要原料,过硫酸铵为引发剂,N-N′-亚甲基双丙烯酰胺为交联剂,丙烯酰胺为单体,采用水溶液聚合法合成高吸水树脂(SAR)。通过设计L25(55)正交试验,确定SAR制备条件,并分别添加适量高岭土、蒙脱土、锂皂石制备复合高吸水性树脂。利用FT-IR和SEM-EDS、TG等对复合高吸水性树脂进行表征。考察复合高吸水性树脂的吸液性能与保水性。SAR实验条件为:丙烯酰胺与淀粉质量比5∶4、合成温度45 ℃、引发剂0.13 g、交联剂0.01 g、氢氧化钠9 g。结果表明:此条件下的SAR吸水倍率最大为179.5 g/g,吸盐倍率为70.75 g/g。FT-IR和SEM-EDS结果显示树脂已成功制备。无机物高岭土、蒙脱土、锂皂石的加入提高了SAR的吸液性能及热稳定性,其中含高岭土SAR的吸水倍率和吸盐倍率均达到最大,吸水倍率为245.0 g/g,吸盐倍率为83.3 g/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马砺
刘西西
周莎莎
于文聪
刘尚明
黄霄
关键词:  可溶性淀粉  水溶液聚合  高吸水性树脂  无机物    
Abstract: Using acrylic acid and soluble starch as the main raw materials, ammonium persulfate as the initiator, N-N′-methylenebisacrylamide as the crosslinking agent, and acrylamide as the monomer,the super absorbent resin (SAR) is synthesized by aqueous solution polymerization. The L25(55) orthogonal test was designed to determine the SAR preparation conditions, and appropriate amounts of kaolin, montmorillonite, and laponite were respectively added to prepare composite super absorbent resin. Use FT-IR, SEM-EDS, TG, etc. to characterize the composite super absorbent resin. The liquid absorption and water retention of the composite super absorbent resin were investigated. The SAR experiment conditions were following: the mass ratio of acrylamide starch was 5∶4, the synthesis temperature was 45 ℃, the initiator was 0.13 g, the crosslinking agent was 0.01 g, and the sodium hydroxide was 9 g. The results showed that under this condition, the maximum water absorption rate of SAR was 179.5 g/g, and the salt absorption rate was 70.75 g/g. FT-IR and SEM-EDS results show that the resin has been successfully prepared. The addition of inorganic kaolin, montmorillonite, and laponite improves the liquid absorption performance and thermal stability of SAR. The water absorption rate and salt absorption rate of SAR containing kaolin both reach the maximum, while the water absorption rate is 245.0 g/g and salt absorption rate is 83.3 g/g.
Key words:  soluble starch    aqueous solution polymerization    super absorbent resin    inorganic
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TQ324.8  
基金资助: 国家重点研发项目(2018YFC0808104)
通讯作者:  mal@xust.edu.cn   
作者简介:  马砺,西安科技大学教授,博士研究生导师,美国伍斯特理工学院高级访问学者。中国科协求是杰出青年成果转化奖、孙越崎青年科技奖、陕西青年科技奖、全国煤炭“五四”青年奖章等荣誉。主要研究方向为火灾防治与消防救援,带领团队开展火灾科学基础、火灾感知与智慧消防、火灾防治新技术与消防救援研究。主持国家重点研发计划课题、国家自然科学基金等国家级项目10余项,获得国家科学技术进步二等奖1项,省部级科技进步奖30余项,发明专利30余项,出版著作5部,发表学术论文100余篇,其中SCI、EI等收录20余篇。
引用本文:    
马砺, 刘西西, 周莎莎, 于文聪, 刘尚明, 黄霄. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177.
MA Li, LIU Xixi, ZHOU Shasha, YU Wencong, LIU Shangming, HUANG Xiao. Preparation and Performance Test of Starch-based Grafted Sodium Acrylate Composite Super Absorbent Resin Material. Materials Reports, 2021, 35(22): 22172-22177.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080018  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22172
1 Wang Y, Zhao J, Ren J P, et al. Materials Reports B: Research Papers, 2020, 34(12),12178(in Chinese).
王毓,赵君,任俊鹏,等. 材料导报:研究篇, 2020, 34(12), 12178.
2 Esteves L P.Cement Concrete Composites,2011,33,717.
3 Liang X T, Hu H Y, Zhang Y J. CIESC Journal, 2013, 64 (9), 3428(in Chinese).
梁兴唐, 胡华宇, 张燕娟. 化工学报, 2013, 64(9), 3428.
4 Hebeish A, Hashem M, Abd El-Hady M M. Carbohydrate Polymers, 2013, 92 (1), 407.
5 Sahoo P K, Rana P K. Journal of Materials Science, 2006, 41(19), 6470.
6 Wu S F, Chen X J, Du J J, et al. New Chemical Materials, 2018, 46(12), 247(in Chinese).
吴淑芳, 陈循军, 杜建军, 等. 化工新型材料, 2018, 46(12), 247.
7 Jone D A,Elmquist L F. Starch-Strke, 2010, 24(1), 23.
8 Li M J, Li Z J, Zhu X F. Progress in Chemical Industry, 2010,29(3), 573(in Chinese).
李铭杰, 李仲谨, 诸晓峰. 化工进展, 2010, 29(3),573.
9 Zhan X Y, Wang F, Li X W. Journal of Shandong University of Science and Technology, 2013(5), 31(in Chinese).
展晓元, 王芳, 李兴维. 山东科技大学学报, 2013(5), 31.
10 Xie H F, Jia Z Y, Yin G Q. Materials Reports A: Review Papers, 2011, 25(3), 79(in Chinese).
谢华飞, 贾振宇, 尹国强. 材料导报A:综述篇, 2011, 25(3),79.
11 Kalaleh H A, Tally M, Atassi Y. Physics, 2013, 4(4), 145.
12 Wu Z P, Suo H L, Zhang T. Polymer Materials Science and Engineering, 2012, 28(6),45(in Chinese).
吴紫平, 索红莉, 张腾. 高分子材料科学与工程, 2012, 28(6),45.
13 Fu L H, Peng Y Z, Wei T Y. Functional Materials, 2012, 43(12), 1579(in Chinese).
付丽华, 彭英知, 韦藤幼. 功能材料, 2012, 43(12),1579.
14 Abdel-Halim E S, Al-Deyab S S. Reactive and Functional Polymers, 2014, 75,1.
15 Han Y Y, Cao Q L, Hua Q X, et al. CIESC Journal, 2015, 66(9), 3795(in Chinese).
韩月云, 曹奇领, 化全县, 等. 化工学报, 2015, 66(9), 3795.
16 Li K, Chen Q L, Zheng Y P. Chemical Propellants and Polymer Mate-rials,2014, 12(6), 73(in Chinese).
李坤, 陈泉良, 郑砚萍. 化学推进剂与高分子材料,2014,12(6),73.
17 Wang J, Wei W L, Li L X. Modern Chemical Industry, 2017, 37(2), 112(in Chinese).
王晶, 魏文珑, 李丽霞. 现代化工, 2017, 37(2), 112.
18 Limparyoon N, Seetapan N, Kiatkamjornwong S. Polymer Degradation and Stability, 2011, 96(6), 1054.
19 Dan W, Shibin S, Zhanqian S. Journal-Northeast Forestry University-Chinese Edition,2006, 34(2), 95.
20 Li P, Kim N H, Hui D, et al. Applied Clay Science,2009,46(4),414.
[1] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[2] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed