Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21030240-7    https://doi.org/10.11896/cldb.21030240
  高分子与聚合物基复合材料 |
水泥基材料中SAP的吸水、释水和再膨胀行为综述
杨海涛1,2, 卞洪健1,2, 刘娟红3,*
1 石家庄铁道大学道路与铁道工程安全保障省部共建教育部重点实验室, 石家庄 050043
2 石家庄铁道大学土木工程学院, 石家庄 050043
3 北京科技大学土木与资源工程学院, 北京 100083
Absorption, Desorption and Re-swelling Behavior of Superabsorbent Polymers in Cementitious Materials: a Review
YANG Haitao1,2, BIAN Hongjian1,2, LIU Juanhong3,*
1 Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 College of Civil and Resource Engineering, University of Science and Technology, Beijing 100083, China
下载:  全 文 ( PDF ) ( 9446KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 裂缝及开裂后水密性的下降是导致水泥基材料耐久性能降低的重要因素。高吸水性树脂(SAP)可降低水泥基材料的自收缩并提高其抗冻性、开裂后抗渗性能和裂缝自愈合能力,进而增强水泥基材料的耐久性能。SAP的上述功能均与其在水泥基材料中的吸水、释水和再膨胀行为相关。本文首先总结了SAP吸水和释水的机理及在溶液和水泥基材料中的关键影响因素,然后综述了裂缝中SAP再膨胀行为的演化机制。在溶液中,凝胶体与溶液之间的渗透压是SAP膨胀的驱动力。作为关键离子,Ca2+可与聚合物链上的羧基络合并导致SAP的离子交联密度增加,较高的离子交联密度可能诱发逆向渗透压并导致SAP释水。在硬化水泥基材料中,影响SAP释水的关键因素是渗透压和毛细力,抑制渗透压作用下的释水并促进毛细力作用下的释水有助于提升SAP的内养护效率。与AA型SAP相比,AA-co-AM型SAP具有更强的水约束能力,因而具有更加优异的内养护效果。水泥基材料裂缝中SAP的再膨胀能力低于溶液环境,这源于裂缝的约束作用和裂缝中较高的离子浓度。基于水泥基材料的配合比、水化进程和裂缝特征研发新型SAP有助于进一步增强SAP的作用效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海涛
卞洪健
刘娟红
关键词:  高吸水性树脂  吸水  释水  再膨胀  水泥基材料    
Abstract: Cracks and the reduction of water tightness after cracking are the important factors leading to the decrease of durability of cementitious mate-rials. Superabsorbent polymers (SAP) can relieve the self-shrinkage and improve the freeze-thaw resistance, impermeability after cracking, and self-healing ability of cementitious materials. The above functions of SAP rely on its absorption, desorption and re-swelling behavior in cementitious materials. In this paper, the mechanism of the absorption and desorption of SAP and its key influencing factors were first summarized. Then, the evolution mechanism of the re-swelling behavior of SAP in cracks was reviewed. In solutions, the osmotic pressure between the gel and solutions is the driving force for SAP swelling. Ca2+, as the key ion, can complex with the carboxyl group on the polymer chains and increase the ionic crosslinking density of SAP. A high ionic crosslinking density will produce a reverse osmotic pressure and induce the desorption of SAP. In cementitious materials, the key factors influencing the desorption rate of SAP are osmotic pressure and capillary force. Reducing the desorption under osmotic pressure and improving the desorption under capillary force can enhance the internal curing efficiency of SAP. Compared with AA SAP, AA-co-AM SAP has a more excellent internal curing effect due to its stronger water restraint ability. The re-swelling capacity of SAP in cracks of cementitious materials is lower than that in solutions, because the restraint effect of cracks and the high ion concentration in cracks inhibit the re-swelling of SAP. Designing new SAP based on the crack characteristics, mix designs and hydration process of cementitious materials may help to enhance the application effect of SAP.
Key words:  superabsorbent polymers    absorption    desorption    re-swelling    cementitious materials
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TU528  
基金资助: 河北省自然科学基金(E2021210003);国家自然科学基金(52208278)
通讯作者:  * 刘娟红,北京科技大学教授。硕士和博士分别毕业与武汉理工大学和中国矿业大学(北京)。主要研究生态环保型高性能土木工程结构材料、新型混凝土材料及其环境行为与建筑物寿命分析和矿山充填用新型胶凝材料研究与应用。发表SCI/EI论文40余篇。juanhong1966@hotmail.com   
作者简介:  杨海涛,石家庄铁道大学讲师。硕士和博士分别毕业与武汉理工大学和北京科技大学。主要从事耐低温混凝土和高性能混凝土自愈合研究。发表SCI/EI论文10余篇。
引用本文:    
杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
YANG Haitao, BIAN Hongjian, LIU Juanhong. Absorption, Desorption and Re-swelling Behavior of Superabsorbent Polymers in Cementitious Materials: a Review. Materials Reports, 2023, 37(4): 21030240-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030240  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21030240
1 Cheng Y, Zhang Y, Jiao Y, et al. Construction and Building Materials, 2016,129, 106.
2 Berrocal C G, Lundgren K, Löfgren I. Cement and Concrete Research, 2016,80, 69.
3 Mignon A, De Belie N, Dubruel P, et al. European Polymer Journal, 2019, 117, 165.
4 Mignon A, Snoeck D, Dubruel P, et al. Materials, 2017, 10(3), 237.
5 Lee H X D, Wong H S, Buenfeld N R. Cement and Concrete Composites, 2018, 88, 150.
6 Snoeck D, Pel L, De Belie N. Scientific Reports, 2017, 7(1), 1.
7 Kang S, Hong S, Moon J. Cement and Concrete Research, 2018, 108, 20.
8 Mo J, Ou Z, Zhao X, et al. Construction and Building Materials, 2017, 146, 283.
9 Snoeck D, Jensen O M, De Belie N. Cement and Concrete Research, 2015, 74, 59.
10 Zhong P, Wyrzykowski M, Toropovs N, et al. Cement and Concrete Research, 2019, 123, 105789.
11 Van Tittelboom K, Wang J, Araújo M, et al. Construction and Building Materials, 2016, 107, 125.
12 Laustsen S, Hasholt M T, Jensen O M. Materials and Structures, 2015, 48(1-2), 357.
13 Mechtcherine V, Schröfl C, Wyrzykowski M, et al. Materials and Structures, 2017, 50(1), 14.
14 Snoeck D, Steuperaert S, Van Tittelboom K, et al. Cement and Concrete Research, 2012, 42(8), 1113.
15 Hong G, Choi S. Construction and Building Materials, 2017, 143, 366.
16 Lee H X D, Wong H S, Buenfeld N R. Cement and Concrete Research, 2016, 79, 194.
17 Rodríguez C R, Figueiredo S C, Deprez M, et al. Cement and Concrete Composites, 2019, 104, 103395.
18 Snoeck D, Van Tittelboom K, Steuperaert S, et al. Journal of Intelligent Material Systems and Structures, 2013, 25(1), 13.
19 Deng H, Liao G. Construction and Building Materials, 2018, 170, 455.
20 Snoeck D, Van den Heede P, Van Mullem T, et al. Cement and Concrete Research, 2018, 113, 86.
21 Mechtcherine V, Reinhardt H W. Application of superabsorbent polymers in concrete construction, Springer, Heidelberg, 2012, pp.58.
22 Mechtcherine V, Secrieru E, Schröfl C. Cement and Concrete Research, 2015, 67, 52.
23 Kang S, Hong S, Moon J. Cement and Concrete Composites, 2018, 88, 64.
24 Yun K, Kim K, Choi W, et al. Polymers, 2017, 9(11), 600.
25 Siriwatwechakul W, Siramanont J, Vichit-Vadakan W. Journal of Materials in Civil Engineering, 2012, 24(8), 976.
26 Ma X, Yuan Q, Liu J, et al. Construction and Building Materials, 2019, 195, 66.
27 Esteves L P. Cement and Concrete Composites, 2011, 33(7), 717.
28 Liu H, Bu Y, Sanjayan J G, et al. Construction and Building Materials, 2016, 112, 253.
29 Ashkani M, Bouhendi H, Kabiri K, et al. Construction and Building Materials, 2019, 206, 540.
30 Pourjavadi A, Fakoorpoor S M, Hosseini P, et al. Cement and Concrete Composites, 2013, 37, 196.
31 Schroefl C, Mechtcherine V, Vontobel P, et al. Cement and Concrete Research, 2015, 75, 1.
32 Yang J, Wang F, Liu Z, et al. Cement and Concrete Research, 2019, 118, 25.
33 Yang H, Liu J, Jia X, et al. Construction and Building Materials, 2020, 243, 118228.
34 Kang S, Hong S, Moon J. Cement and Concrete Research, 2017, 97, 73.
35 Riyazi S, Kevern J T, Mulheron M. Construction and Building Materials, 2017, 147, 669.
36 Wyrzykowski M, Lura P, Pesavento F, et al. Cement and Concrete Research, 2011, 41(12), 1349.
37 Farzanian K, Ghahremaninezhad A. Materials and Structures, 2017, 50(5), 216.
38 Farzanian K, Ghahremaninezhad A. Materials and Structures, 2018, 51(1), 3.
39 Wang F, Yang J, Cheng H, et al. ACI Materials Journal, 2015, 112(3), 463.
40 Yang H, Liu J, Zhou Q, et al. Materials and Structures, 2019, 52(5), 103.
41 Hong G, Choi S. Construction and Building Materials, 2018, 164, 570.
42 Hong G, Song C, Park J, et al. Construction and Building Materials, 2019, 195, 187.
[1] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[2] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[3] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[4] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[5] 张定军, 韩筱, 朱金龙, 杨世元, 赵文锦. 反相微乳液聚合法制备的(AA-AM-C18DMAAC-St)四元共聚感温凝胶微球[J]. 材料导报, 2022, 36(5): 20120204-6.
[6] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[7] 贺炯煌, 龙广成, 常智杨, 杨智涵, 谢友均. 不同养护温度下SAP对水泥浆体水化动力学的影响[J]. 材料导报, 2022, 36(22): 20100061-7.
[8] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[9] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[10] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[11] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[12] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[13] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[14] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[15] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed