Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21040022-8    https://doi.org/10.11896/cldb.21040022
  金属与金属基复合材料 |
金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展
祖丽呼玛尔·木沙江, 赵静, 肖鹏飞*
东北林业大学林学院,哈尔滨 150040
Application Progress of Metal Nanomaterials in Persulfate-based Advanced Oxidation Process
MUSAJAN Zulhumar, ZHAO Jing, XIAO Pengfei*
College of Forestry, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 21013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着过硫酸盐高级氧化技术的迅速兴起,开发高效活化过硫酸盐的催化剂引起了国内外学者的高度关注。在过硫酸盐的非均相催化剂中,金属基纳米材料由于自身粒径小、比表面积大、比表面活化能高、磁学性能好等结构与性质特点而呈现出良好的催化特性、化学稳定性、重复利用性等优势,被认为是过硫酸盐活化剂的最佳选择之一,在环境污染控制领域彰显出巨大的应用前景。但是,单一金属纳米材料在反应过程中易发生颗粒团聚、自身氧化、金属离子释放等问题,一定程度上限制了金属纳米催化剂的广泛应用。
针对以上问题,研究人员使用复合材料替代单一材料作为过硫酸盐的活化剂以净化环境污染物。例如在催化剂制备过程中,将金属纳米颗粒负载在各类载体材料上,在催化净化过程中不仅能达到协同处理的效果,还能减少金属离子的流失,同时提高催化剂的重复使用性能。此外,制备出结构独特的多种金属基纳米复合材料作为非均相催化剂,多种金属之间的协同效应进一步提升了催化剂的活化性能,使其对污染物的去除效果更强。近年来,国内外研究者在金属基纳米材料的制备与结构特性、活化过硫酸盐过程中自由基与非自由基的产生机制、净化污染物的效果与机理方面不断探索,积累了大量具有重要价值的研究成果。
本文对以纳米零价金属、纳米金属氧化物负载型金属基纳米颗粒及纳米铁酸盐等作为催化剂活化过硫酸盐的理论和应用研究进行了全面地综述,围绕不同金属基纳米材料的制备方法与结构特点、活化过硫酸盐生成活性物种的反应机理等方面展开系统阐述,最后指出了该类材料在活化过硫酸盐的过程中存在催化稳定性不高、产生环境风险等亟待解决的问题,并对今后的研究方向进行展望,旨在为金属基纳米催化剂在过硫酸盐高级氧化技术中的安全、高效应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祖丽呼玛尔·木沙江
赵静
肖鹏飞
关键词:  金属纳米颗粒  活化过硫酸盐  高级氧化工艺  非均相催化  自由基    
Abstract: With the rapid development of persulfate advanced oxidation methods, the improvement of catalysts for the efficient activation of persulfate has attracted considerable attention from researchers worldwide. Among the heterogeneous catalysts for persulfate, metal-based nanomaterials are characterized by good catalytic properties, chemical stability, and reusability, owing to their small particle size, large specific surface area, high specific surface activation energy, and excellent magnetic properties. Therefore, metal-based nanomaterials are considered to be the most suitable materials as persulfate activators and have considerable potential for application in the field of environmental pollution control. However, single metal nanoparticles are prone to particle agglomeration, self-oxidation, and metal ion release during the reaction process, thereby partly limiting the extensive application of metal nanocatalysts.
To address this problem, researchers have used composite materials as alternatives to single materials as persulfate activators to treat environmental pollutants. For example, metal nanoparticles have been loaded onto different carrier materials during catalyst preparation, which facilitates synergistic treatment effects, reduces the loss of metal ions, and enhances the reusability of catalysts. In addition, polymetallic nanocomposites with unique structures have been prepared as heterogeneous catalysts, and the synergistic effects of multiple metals have been demonstrated to further enhance the activation performance of catalysts, thereby improving the efficiency of pollutant removal. Numerous studies have recently examined the preparation and structural properties of metal-based nanoparticles, mechanisms underlying the generation of free radical and non-free radical species in activation process of persulfate, and the removal effects and mechanisms of pollutant by metal-based nanocomposites activated persulfate, thereby contributing to valuable research data.
In this paper, we present a comprehensive review of the theoretical and applied research that has been conducted on persulfate oxidation using nano-zero-valent metals, nano-metal oxides, nano-ferrite, and supported metal nanoparticles as catalysts. We present a systematic summary of the preparation methods and structural characteristics of different metal nanoparticles, the reaction mechanisms underlying the persulfate activation in generating active species. We also propose that metal nanoparticles have low catalytic stability and certain environmental risks when used for persulfate activation. Moreover, we suggest future research directions, which will serve as a reference for the development and application of safe and efficient metal nanocatalysts for use in the persulfate advanced oxidation.
Key words:  Metal nanoparticles    activated persulfate    advanced oxidation process    heterogeneous catalysis    free radical
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  X505  
基金资助: 黑龙江省自然科学基金项目(LH2019D002)
通讯作者:  * 肖鹏飞,东北林业大学林学院副教授、硕士研究生导师。2002年7月本科毕业于辽宁大学环境学院,2011年3月毕业于日本九州大学森林资源科学专业,获得农学博士学位。目前主要从事环境催化材料的开发及高级氧化技术方面的研究。主持国家自然科学基金等国家、省部级科研项目10余项,在国内外学术期刊发表论文70余篇,授权专利4项,出版专著2部。xpfawd@nefu.edu.cn   
作者简介:  祖丽呼玛尔·木沙江,2020年7月毕业于东北林业大学环境科学专业,获得理学学士学位。现为东北林业大学林学院硕士研究生,在肖鹏飞副教授的指导下进行研究。目前主要研究领域为非均相催化剂的制备及有机废水处理。
引用本文:    
祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
MUSAJAN Zulhumar, ZHAO Jing, XIAO Pengfei. Application Progress of Metal Nanomaterials in Persulfate-based Advanced Oxidation Process. Materials Reports, 2023, 37(4): 21040022-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040022  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21040022
1 An L, Xiao P. RSC Advances, 2020, 10, 19401.
2 Xiao P, An L, Wu D. New Carbon Materials, 2020, 35, 667.
3 Duan X, Sun H, Kang J, et al. ACS Catalysis, 2015, 5, 4629.
4 Saravanan A, Kumar P, Karishma S, et al. Chemosphere, 2021, 264, 128580.
5 Liu J, Jiang J, Meng Y, et al. Journal of Hazardous Materials, 2020, 388, 122026.
6 Rana A, Yadav K, Jagadevan S. Journal of Cleaner Production, 2020, 272, 122880.
7 Xiao R, Luo Z, Wei Z, et al. Current Opinion in Chemical Engineering, 2018, 19, 51.
8 Xiao P F, Jiang S J. Chemical Industry and Engineering Progress, 2018, 37(12), 4862 (in Chinese).
肖鹏飞, 姜思佳. 化工进展, 2018, 37(12), 4862.
9 Du J, Wang Y, Faheem, et al. RSC Advances, 2019, 9, 20323.
10 Jin X Y, Li R C, Chen Z L. Environmental Chemistry, 2014, 33(5), 812 (in Chinese).
金晓英, 李任超, 陈祖亮. 环境化学, 2014, 33(5), 812.
11 Li R, Jin X, Megharaj M, et al. Chemical Engineering Journal, 2015, 264, 587.
12 Kim C, Ahn J, Kim T, et al. Environmental Science & Technology, 2018, 52, 3625.
13 Yirsaw B, Megharaj M, Chen Z, et al. Journal of Environmental Sciences, 2016, 44, 88.
14 Fu X Y, Zhao W T, Du J S, et al. China Water & Wastewater, 2020, 36(11), 57 (in Chinese).
傅晓艳, 赵委托, 杜江坤, 等. 中国给水排水, 2020, 36(11), 57.
15 Fu X Y, Bao J G, Du J S, et al. Safety and Environmental Engineering, 2015, 22(6), 51 (in Chinese).
傅晓艳, 鲍建国, 杜江坤, 等. 安全与环境工程, 2015, 22(6), 51.
16 Shah N, Khan J, Sayed M, et al. Journal of Cleaner Production, 2020, 246, 119032.
17 Ghorbanian Z, Asgari G, Samadi M, et al. Journal of Molecular Liquids, 2019, 296, 111873.
18 Moghaddam S, Rasoulifard M, Vahedpour M, et al. Korean Journal of Chemical Engineering, 2014, 31, 1577.
19 Ye Q, Xu H, Zhang J, et al. Chemical Engineering Journal, 2020, 382, 123054.
20 Shah N, Khan J, Sayed M, et al. Chemical Engineering Journal, 2019, 356, 199.
21 Shi Q Q, Pu S Y, Yang X. Environmental Science, 2020, 41(10), 4615 (in Chinese).
石清清, 蒲生彦, 杨犀. 环境科学, 2020, 41(10), 4615.
22 Fang L, Liu K, Li F, et al. Journal of Hazardous Materials, 2021, 403, 123669.
23 Shan A, Farooq U, Lyu S, et al. Chemical Engineering Journal, 2020, 386, 123995.
24 Chen L, Cai T, Sun W, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 720.
25 Shabanloo A, Salari M, Shabanloo N, et al. Journal of Molecular Liquids, 2020, 298, 112088.
26 Yeşil R, Çetinkaya S. Journal of Nanoparticle Research, 2020, 22, 198.
27 Ding Y, Pan C, Peng X, et al. Chemical Engineering Journal, 2020, 384, 123378.
28 You J, Sun W, Su S, et al. Chemical Engineering Journal, 2020, 400, 125925.
29 Zhang L, Liu B, Li J. Journal of Molecular Liquids, 2020, 299, 112096.
30 Zhang L, Guo Y, Xie R, et al. Water, Air, & Soil Pollution, 2020, 231, 375.
31 Jiang X, Guo Y, Zhang L, et al. Chemical Engineering Journal, 2018, 341, 392.
32 Zhang L, Shen S. Journal of Industrial and Engineering Chemistry, 2020, 83, 123.
33 Wu Y, Chen X, Han Y, et al. Environmental Science & Technology, 2019, 53, 9081.
34 Wu X, Xu G, Zhu J. Ultrasonics Sonochemistry, 2019, 58, 104634.
35 Yao Y, Chen H, Lian C, et al. Journal of Hazardous Materials, 2016, 314, 129.
36 Jiang Z, Zhao J, Li C, et al. Carbon, 2020, 158, 172.
37 Xiao P F, An L, Han S. Chemical Industry and Engineering Progress, 2020, 39(8), 3293 (in Chinese).
肖鹏飞, 安璐, 韩爽. 化工进展, 2020, 39(8), 3293.
38 Wang Y, Zhu X, Feng D, et al. Catalysts, 2019, 9, 1062.
39 Zhai W Y, Li M, Zhang Q. China Environmental Science, 2020, 40(6), 2483 (in Chinese).
翟文琰, 李孟, 张倩. 中国环境科学, 2020, 40(6), 2483.
40 Zhang B, Wang Q, Zhang Y, et al. Separation and Purification Technology, 2020, 242, 116820.
41 Wang A D, Feng Z D, Qin D Y, et al. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4), 703 (in Chinese).
王爱德, 冯振东, 覃大禹, 等. 北京大学学报(自然科学版), 2020, 56(4), 703.
42 Li S, Tang J, Liu Q, et al. Environmental International, 2020, 138, 105639.
43 Wu H, Jian W, Zhang L, et al. Materials Science in Semiconductor Processing, 2021,121, 105373.
44 Huang Z, Lin Q, Luo H, et al. Chemical Engineering Journal, 2020, 398, 125458.
45 Deng S, Zhang X, Lv G, et al. Journal of Sol-Gel Science and Technology, 2019, 91, 54.
46 Fu X, Zhang J, Zhao H, et al. Separation and Purification Technology, 2020, 230, 115886.
47 Liu L, Li Y, Pang Y, et al. Chemical Engineering Journal, 2020, 401, 126014.
48 Dong X, Ren B, Sun Z, et al. Applied Catalysis B:Environmental, 2019, 253, 206.
49 Dong X, Ren B, Zhang X, et al. Applied Catalysis B:Environmental, 2020, 272, 118971.
50 Wang Y, Zhang Y, Wang J, et al. Journal of Membrane Science, 2020, 615, 118559.
51 Tan Y, Li C, Sun Z, et al. Chemical Engineering Journal, 2020, 388, 124386.
52 Xu X, Chen W, Zong S, et al. Journal of Hazardous Materials, 2019, 377, 62.
53 Zong S, Xu X, Ran G, et al. RSC Advances, 2020, 10, 11410.
54 Yang S, Duan X, Liu J, et al. Applied Catalysis B: Environmental, 2020, 267, 118701.
55 Yang S, Huang Z, Wu P, et al. Applied Catalysis B:Environmental, 2020, 260, 118129.
56 Wu J, Wang B, Blaney L, et al. Chemical Engineering Journal, 2019, 361, 99.
57 Guo R, Meng Q, Zhuang H, et al. Chemical Engineering Journal, 2019, 355, 953.
58 Xu X, Feng Y, Zhen Z, et al. Separation and Purification Technology, 2020, 251, 117351.
59 Du X, Zhang Y, Si F, et al. Chemical Engineering Journal, 2019, 356, 178.
60 Deng J, Lu Y A, Ma X Y. Journal of China University of Mining & Technology, 2015, 44(6), 1126 (in Chinese).
邓婧, 卢遇安, 马晓雁. 中国矿业大学学报, 2015, 44(6), 1126.
61 Liu Y, Guo H, Zhang Y, et al. Environmental Pollution, 2019, 252, 1042.
62 Wu C, Yang M, Lin K. Journal of Environmental Chemical Engineering, 2018, 6, 426.
63 Li X J, Liao F Z, Ye L M, et al. Chemical Industry and Engineering Progress, 2019, 38(10), 4712 (in Chinese).
李小娟, 廖凤珍, 叶兰妹, 等. 化工进展, 2019, 38(10), 4712.
64 Bhattacharjee S, Lee Y R, Puthiaraj P, et al. Catalysis Surveys from Asia, 2015, 19(4), 203.
65 Li H X, Yang Z X, Lu S, et al. Chemosphere, 2021, 273, 129643.
66 Xian G, Kong S, Li Q, et al. Frontiers in Chemistry, 2020, 8, 177.
67 Deng J, Xu M, Qiu C, et al. Applied Surface Science, 2018, 459, 138.
68 Yan J, Lei M, Zhu L, et al. Journal of Hazardous Materials, 2011, 186, 1398.
69 Liu Y Q, Su B Q, Tao Y, et al. Chinese Journal of Environmental Engineering, 2020, 14(9), 2515 (in Chinese).
刘一清, 苏冰琴, 陶艳, 等. 环境工程学报, 2020, 14(9), 2515.
70 Keyikoglu R, Karatas O, Khataee A, et al. Separation and Purification Technology, 2020, 247, 116925.
71 Karimipourfard D, Eslamloueyan R, Mehranbod N. Journal of Environmental Chemical Engineering, 2020, 8, 103426.
72 Zhang T, Zhu H, Croue J, et al. Environmental Science & Technology, 2013, 47, 2784.
73 Qin W, Fang G, Wang Y, et al. Chemical Engineering Journal, 2018, 348, 526.
74 Li J, Ren L, Ji F, et al. Chemical Engineering Journal, 2017, 324, 63.
75 Zhao Y, Song M, Cao Q, et al. Journal of Hazardous Materials, 2020, 400, 122887.
76 Lyu J, Ge M, Hu Z, et al. Chemical Engineering Journal, 2019, 389, 124456.
77 Balakrishnan R M, Ilango I, Gamana G, et al. Journal of Water Process Engineering, 2020, 40, 101823.
78 Deng J, Xu M Y, Qiu C G, et al. Applied Surface Science, 2018, 459, 138.
79 Chen Y Q, Li M Y, Tong Y, et al. Chemical Engineering Journal, 2019, 368, 495.
80 Cai C, Liu J, Zhang Z Y, et al. Separation and Purification Technology, 2016, 165, 42.
[1] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[2] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[3] 胡艳丽, 白宇含, 张毅, 张昊, 朱若英, 卢雪. 反应型阳离子抗菌剂的合成及其对毛织物的长效抗菌整理[J]. 材料导报, 2022, 36(17): 21050278-8.
[4] 王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
[5] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[6] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[7] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[8] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[9] 吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
[10] 李锐超, 桂泰江, 丛巍巍, 张盾, 郭丽莎, 王鹏. 含氟硅烷偶联剂低聚物的合成及性能表征[J]. 材料导报, 2021, 35(2): 2199-2206.
[11] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[12] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[13] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[14] 阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
[15] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed