Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21040213-7    https://doi.org/10.11896/cldb.21040213
  高分子与聚合物基复合材料 |
碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B
王渊源, 阎鑫*, 艾涛, 周鑫, 余康, 牛艳辉
长安大学材料科学与工程学院, 西安 710064
Carbonized Melamine Foam Loaded with ZIF-67 Activated Peroxymonosulfate for Degradation of Rhodamine B
WANG Yuanyuan, YAN Xin*, AI Tao, ZHOU Xin, YU Kang, NIU Yanhui
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 9174KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以碳化三聚氰胺泡沫为载体,原位生长金属有机框架化合物ZIF-67,构建碳化三聚氰胺泡沫负载ZIF-67高效非均相催化剂(CMF/ZIF-67)。采用X-射线衍射仪(XRD)、氮气吸附仪、扫描电子显微镜(SEM)对CMF/ZIF-67的晶体结构、比表面积和形貌进行分析,并以罗丹明B(RhB)为降解物评价催化剂活化过硫酸氢钾(PMS)的反应活性。结果表明:CMF/ZIF-67非均相催化剂显示出非常强的活化PMS能力,在30 min内RhB降解率为98%。另外,研究了催化剂投加量、PMS投加量、pH值、温度及RhB初始浓度对CMF/ZIF-67/PMS体系降解RhB的影响。结果表明:随着催化剂和PMS投加量的增加,RhB的降解率也增大;溶液初始pH在5~7范围内时RhB的降解率可达98%以上;温度对RhB 降解速率的影响符合阿伦尼乌斯模型,降解过程是一个表面反应控制过程。自由基捕获实验结果表明硫酸根自由基是RhB降解的主要活性自由基。经过四次循环使用后催化剂体系对RhB的降解率仍达到90%以上,催化剂具有优异的循环稳定性,在降解染料废水领域具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王渊源
阎鑫
艾涛
周鑫
余康
牛艳辉
关键词:  碳化三聚氰胺泡沫  ZIF-67  过硫酸氢钾  非均相催化  高级氧化    
Abstract: In this work, an efficient heterogeneous catalyst was prepared through in-situ growth of ZIF-67 on carbonized melamine foam. The crystal structure, specific surface area and morphology of CMF/ZIF-67 were characterized by X-ray diffraction (XRD), nitrogen adsorption apparatus and scanning electron microscopy (SEM). Rhodamine B (RhB) degradation was employed as a model test for evaluating potassium peroxymonosulfate (PMS) activation. The results show that the CMF/ZIF-67 heterogeneous catalyst exhibites excellent efficiency for PMS activation, and the degradation rate of RhB is up to 98% in 30 min. The other factors which could influence PMS activation were also analyzed as well, for instance, catalyst dosage, PMS dosage, pH value, temperature and RhB concentration. The experimental results show that the degradation efficiency of RhB also increases with the increase of the dosage of CMF/ZIF-67 and PMS. The degradation rate of RhB can reach more than 98% in the initial pH range of 5—7. The effect of temperature on the degradation rate of RhB conforms to the Arrhenius model, and the degradation process is a surface reaction controlled process. The results of the free radical capture experiment show that the sulfate radicals are the dominant active species for RhB degradation. After four cycles, the degradation rate of RhB still maintains above 90% with CMF/ZIF-67 catalyst. The catalyst has potential application in the field of degradation of dye wastewater due to its excellent cycling stability.
Key words:  carbonized melamine foam    ZIF-67    potassium peroxymonosulfate    heterogeneous catalyst    advanced oxidation process
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  O614  
基金资助: 基金项目:陕西省国际科技合作项目(2018KW-052);中央高校基本科研计划项目(300102310301);大学生创新创业项目
通讯作者:  *xinyan@chd.edu.cn   
作者简介:  王渊源,本科毕业于宝鸡文理学院,硕士就读于长安大学,师从阎鑫副教授,主要从事高级氧化技术降解水体污染物研究。
阎鑫,副教授,博士毕业于西北工业大学,美国特拉华大学访问学者。主要从事纳米复合材料的制备、表征以及在环境能源领域应用研究。在国内外重要期刊发表文章30多篇,授权中国发明专利20余项。
引用本文:    
王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
WANG Yuanyuan, YAN Xin, AI Tao, ZHOU Xin, YU Kang, NIU Yanhui. Carbonized Melamine Foam Loaded with ZIF-67 Activated Peroxymonosulfate for Degradation of Rhodamine B. Materials Reports, 2022, 36(17): 21040213-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040213  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21040213
1 Hethnawi A, Nassar N N, Manasrah A D, et al. Chemical Engineering Journal, 2017, 320, 389.
2 Ponnusamy S K, Sunita V, Subburaj S. Bioresource Technology, 2017, 250, 716.
3 Isik M, Sponza D T. Separation & Purification Technology, 2008, 60(1), 64.
4 Eichlerova I, Homolka L, Nerud F. Bioresource Technology, 2006, 97(16), 2153.
5 Do T M, Byun J Y, Kima S H. Catalysis Today, 2017, 295, 48.
6 Forgacs E, Cserhati T, Oros G. Environment International, 2004, 30(7), 953.
7 Li C X, Peng W, Fang Z D, et al. Materials Reports A: Review Papers, 2018, 32(7), 2223 (in Chinese).
李晨旭, 彭伟, 方振东, 等.材料导报:综述篇, 2018, 32(7), 2223.
8 Ghauch A, Tuqan A M. Chemical Engineering Journal, 2012, 183, 162.
9 Ahmed M M, Barbati S, Doumenq P, et al. Chemical Engineering Journal, 2012, 197, 440.
10 Moradi M, Ghanbari F, Tabrizi E M. Toxicological and Environmental Chemistry, 2015, 97(6), 700.
11 Yang S Y, Ping W, Yang X, et al. Journal of Hazardous Materials, 2010, 179, 552.
12 Qi C D, Liu X T, Ma J, et al. Chemosphere, 2016, 151, 280.
13 Hu P, Long M. Applied Catalysis B: Environmental, 2016, 181, 103.
14 Duan X G, Ao Z M, Li D G,et al. Carbon, 2016, 103, 404.
15 Anipsitakis G P, Dionysiou D D. Environmental Science & Technology, 2004, 38(13), 3705.
16 Zhang B T, Zhang Y, Teng Y G, et al. Critical Reviews in Environmental Science & Technology, 2015, 45(16), 1756.
17 Du Y, Ma W, Liu P,et al. Journal of Hazardous Materials, 2016, 308, 58.
18 Chen X Y, Chen J W, Qiao X L,et al. Applied Catalysis B: Environmental, 2008, 80, 116.
19 Shukla P R, Wang S, Sun H, et al. Applied Catalysis B: Environmental, 2010, 100(3-4), 529.
20 Li X H, Guo W L, Liu Z H,et al. Applied Surface Science, 2016, 369, 130.
21 Yang Y A, Peng F A, Xiao L A, et al. Inorganic Chemistry Communications, 2020, 122, 108282.
22 Hao B, Tang Y T, Li X F, et al. Materials Reports A: Review Papers, 2020, 34(6), 11035 (in Chinese).
郝博, 唐一桐, 李雪霏, 等. 材料导报:综述篇, 2020, 34(6), 11035.
23 Zhao C C, Wu G R. Chemical Industry and Engineering Progress, 2019, 38(4), 1775.
24 Küsgens P, Zgaverdea A, Fritz H G, et al. Journal of the American Ceramic Society, 2010, 93, 2476.
25 Furtado A M B, Liu J, Wang Y, et al. Journal of Materials Chemistry A, 2011, 21, 6698.
26 He S J, Chen W. Journal of Power Sources, 2014, 262, 391.
27 Zhang Y, Zhao H Y, Du Y P. Journal of Materials Chemistry A, 2016, 4(19), 7155
28 Wang Q W, Li Y, Shen Z L, et al. Applied Surface Science, 2019, 495, 143568
29 Rastogi A, Al-Abed S R, Dionysiou D D. Applied Catalysis B: Environmental, 2009, 85(3-4), 171.
30 Wang Y X, Duan X G, Sun H. Q, et al. Chemical Engineering Journal, 2015, 266, 12.
31 Yang Q J, Choi H, Dionysiou D D. Applied Catalysis B: Environmental, 2009, 88(3-4), 462.
32 Wu C H, Yun W C, Wi-Afedzi T, et al. Journal of Colloid and Interface Science, 2018, 514,262.
33 Anipsitakis G P, Dionysiou D D. Applied Catalysis B: Environmental, 2004, 54, 155.
34 Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environmental Science & Technology, 2006, 40, 1000.
35 Sharma J, Mishra I M, Dionysiou D D,et al. Chemical Engineering Journal, 2015, 276, 193.
36 Ghanbari F, Moradi M. Chemical Engineering Journal, 2016, 310, 307.
37 Guan Y H, Ma J, Ren Y M, et al. Water Research, 2013, 47(14), 5431.
38 Fan Y, Ji Y, Zheng G, et al. Chemical Engineering Journal, 2017, 330, 831.
[1] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[2] 阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
[3] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[4] 郭东丽, 赵志远, 尤世界, 刘艳彪. 纳米限域催化剂在高级氧化水处理中的应用研究进展[J]. 材料导报, 2022, 36(20): 22050273-7.
[5] 孙雪梓, 王崇臣, 李渝航. MIL-53(Al)基功能材料的制备及在水处理中的应用[J]. 材料导报, 2022, 36(20): 22070231-9.
[6] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[7] 熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波. 基于零价铁的高级氧化技术与装备[J]. 材料导报, 2021, 35(21): 21012-21021.
[8] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[9] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed