Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22050273-7    https://doi.org/10.11896/cldb.22050273
  新型环境功能材料 |
纳米限域催化剂在高级氧化水处理中的应用研究进展
郭东丽1, 赵志远2, 尤世界2, 刘艳彪1,3,*
1 东华大学环境科学与工程学院,国家环境保护纺织工业污染防治工程技术中心,上海 201620
2 哈尔滨工业大学环境学院,城市水资源与水环境国家重点实验室,哈尔滨 150090
3 上海污染控制与生态安全研究院,上海 200092
Research Advances in the Application of Nanoconfined Catalysts in Advanced Oxidation Water Treatment
GUO Dongli1, ZHAO Zhiyuan2, YOU Shijie2, LIU Yanbiao1,3,*
1 Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
2 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 3283KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纳米限域催化剂由于其独特的结构和理化特性引起了广泛关注,有望通过其解决传统催化氧化水处理过程所面临的催化剂活性低和稳定性差等问题。为进一步深化对纳米限域催化的认识,本文回顾了纳米限域催化剂在不同高级氧化水处理过程中的应用研究进展,归纳了水处理过程中独特的“纳米限域效应”和载体材料的理化特性,总结了纳米限域催化剂在不同高级氧化体系中的催化氧化新机理。最后,提出了纳米限域催化剂在高级氧化水处理过程中面临的挑战及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭东丽
赵志远
尤世界
刘艳彪
关键词:  纳米限域催化  高级氧化  水处理    
Abstract: Recently, nanoconfined catalysts have been extensively investigated toward advanced water treatment due to their unique structure and physicochemical attributes, through which the long-lasting challenges may get addressed like low catalytic activity and poor stability in conventional catalytic oxidation systems. To deepen the understanding on nanoconfined catalysts, herein, we systematically reviewed the research advances of nanoconfined catalysts in different advanced water treatment systems, summarized the unique “nanoconfinement effect” in water treatment processes and the desirable characteristics of various host materials, revealed the new catalytic oxidation mechanisms of nanoconfined catalysts in different advanced oxidation systems. Finally, existing challenges and future prospects of nanoconfined catalysis in advanced water treatment were presented.
Key words:  nanoconfined catalysis    advanced oxidation    water treatment
发布日期:  2022-10-26
ZTFLH:  X52  
基金资助: 国家自然科学基金(52170068;U21A20161)
通讯作者:  *yanbiaoliu@dhu.edu.cn   
作者简介:  郭东丽,2015年6月本科毕业于河南工程学院,2018年6月硕士毕业于河南师范大学,现为东华大学环境科学与工程学院博士研究生,导师为刘艳彪教授,主要从事纳米限域电活性分离膜方向研究。
刘艳彪,东华大学环境工程系教授、博士研究生导师,生态环境部纺织工业污染防治工程中心副主任,东华大学水污染控制研究所所长,新加坡国立大学博士后研究员,哈佛大学访问学者。2012年博士毕业于上海交通大学。主要从事电活性分离膜方向的研究。以第一/通讯作者身份在Acc. Chem. Res.(1篇)、Environ. Sci. Technol.(6篇)和Water Res.(3篇)等相关领域权威学术期刊发表论文100余篇,他引5 000余次,H指数43,获授权发明专利10余件。
引用本文:    
郭东丽, 赵志远, 尤世界, 刘艳彪. 纳米限域催化剂在高级氧化水处理中的应用研究进展[J]. 材料导报, 2022, 36(20): 22050273-7.
GUO Dongli, ZHAO Zhiyuan, YOU Shijie, LIU Yanbiao. Research Advances in the Application of Nanoconfined Catalysts in Advanced Oxidation Water Treatment. Materials Reports, 2022, 36(20): 22050273-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050273  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22050273
1 Turner C H, Brennan J K, Johnson J K, et al. Journal of Chemical Phy-sics, 2002, 116(5), 2138.
2 Dai J J, Zhang H B. Small, 2021, 17(22), e2005334.
3 Rothenberger G, Gratzel M. Chemical Physics Letters,1989,154(2),165.
4 Li X, Zhang J. Materials Reports B:Research Papers, 2022, 36(11),1(in Chinese).
李想, 张军. 材料导报:研究篇, 2022, 36(11), 1.
5 Zhang S, Hedtke T, Zhou X C, et al. ACS ES & T Engineering, 2021, 1(4), 706.
6 Shi J M, Teng W, Deng Z L, et al. Environmental Science: Nano, 2021, 8(12), 3435.
7 Wang X N, Li H C, Shan C, et al. Chemical Engineering Journal Advances, 2022, 9, 100229.
8 Qian J S, Gao X, Pan B C. Environmental Science & Technology, 2020, 54(14), 8509.
9 Chakraborty S, Kumar H, Dasgupta C, et al. Accounts of Chemical Research, 2017, 50(9), 2139.
10 Leoni F, Calero C, Franzese G. ACS Nano, 2021, 15(12), 19864.
11 Sun Y R, Yu F, Ma J. Acta Physico-Chimica Sinica, 2017, 33(11), 2173(in Chinese).
孙怡然, 于飞, 马杰. 物理化学学报, 2017, 33(11), 2173.
12 Zhou Z Q, Yu F, Ma J. Environmental Chemistry Letters,2022,20(1),563.
13 Jiang Q, Ward M D. Chemical Society Reviews, 2014, 43(7), 2066.
14 Meldrum F C, O’Shaughnessy C. Advanced Materials, 2020, 32(31), 2001068.
15 Miners S A, Rance G A, Khlobystov A N. Chemical Society Reviews, 2016, 45(17), 4727.
16 Yang F, Deng D H, Pan X L, et al. National Science Review, 2015, 2(2), 183.
17 De Volder M F, Tawfick S H, Baughman R H, et al. Science, 2013, 339(6119), 535.
18 Tian W J, Zhang H Y, Duan X G, et al. Advanced Functional Materials, 2020, 30(17), 1909265.
19 Figueiredo J L. Journal of Materials Chemistry A, 2013, 1(33), 9351.
20 Zhu C Q, Zhao S F, Fan Z W, et al. Advanced Functional Materials, 2020, 30, 2003947.
21 Yan P J, Tian P F, Li K J, et al. Chemical Engineering Journal, 2020, 397, 125484.
22 Zhang X L, Wang Y H, Chang X F, et al. Environmental Science: Nano, 2017, 4(3), 679.
23 Lee W, Park S J. Chemical Reviews, 2014, 114(15), 7487.
24 Deng J, Deng D H, Bao X H. Advanced Materials, 2017, 29, 1606967.
25 Li Z H, Zhang X, Cheng H F, et al. Advanced Energy Materials, 2020, 10, 1900486.
26 Ma X J, Chai Y T, Li P, et al. Accounts of Chemical Research, 2019, 52(5), 1461.
27 Hao B, Tang Y T, Li X F, et al. Materials Reports A:Review Papers, 2020, 34(6), 11035(in Chinese).
郝博, 唐一桐, 李雪霏, 等. 材料导报:综述篇,2020,34(6),11035.
28 Rojas S, Horcajada P. Chemical Reviews, 2020, 120(16), 8378.
29 Sharp C H, Bukowski B C, Li H, et al. Chemical Society Reviews, 2021, 50(20), 11530.
30 Chen L Y, Tsumori N, Xu Q. Science China-Chemistry, 2020, 63(11), 1601.
31 Liu F, Shan C, Zhang X L, et al. Journal of Hazardous Materials, 2017, 321, 290.
32 Zhao X, Lyu L, Pan B C, et al. Chemical Engineering Journal, 2011, 170(2-3), 381.
33 Yuan M, Yang R, Wei S, et al. Journal of Colloid and Interface Science, 2019, 538, 720.
34 Nie G Z, Pan B C, Zhang S J, et al. Journal of Physical Chemistry C, 2013, 117(12), 6201.
35 Cui Z M, Chen Z, Cao C Y, et al. Chemical Communications, 2013, 49(23), 2332.
36 Liu B M, Pan S L, Liu Z Y, et al. Journal of Hazardous Materials, 2020, 386, 121969.
37 Zhang S, Sun M, Hedtke T, et al. Environmental Science & Technology, 2020, 54(17), 10868.
38 Yang Z C, Qian J S, Yu A Q, et al. Proceedings of the National Academy of Sciences of the United States of America Process,2019,116(14),6659.
39 Su P, Zhou M H, Ren G B, et al. Journal of Materials Chemistry A, 2019, 7(42), 24408.
40 Zeng T, Zhang X L, Wang S H, et al. Chemistry-A European Journal, 2014, 20(21), 6474.
41 Yao Y J, Chen H, Qin J C, et al. Water Research, 2016, 101, 281.
42 Cao J, Yang Z H, Xiong W P, et al. Separation and Purification Technology, 2020, 250, 117237.
43 Wu Y W, Chen X T, Han Y, et al. Environmental Science & Technology, 2019, 53(15), 9081.
44 Kang J, Duan X G, Wang C, et al. Chemical Engineering Journal, 2018, 332, 398.
45 Su P, Fu W Y, Du X D, et al. Chemical Engineering Journal, 2021, 420, 129446.
46 Wu D M, Ye P, Wang M Y, et al. Journal of Hazardous Materials, 2018, 352, 148.
47 Huang L Z, Wei X L, Gao E L, et al. Applied Catalysis B: Environmental, 2020, 268, 118459.
48 Long Y K, Dai J, Zhao S Y, et al. Journal of Hazardous Materials, 2022, 424, 126786.
49 Cui X F, Wang Y J, Jiang G Y, et al. Journal of Materials Chemistry A, 2014, 2(48), 20939.
50 Chen W, Fan Z L, Zhang B, et al. Journal of the American Chemical Society, 2011, 133(38), 14896.
51 Qian X F, Ren M, Zhu Y, et al. Environmental Science & Technology, 2017, 51(7), 3993.
52 Yang F, Xia Y, Zhang B, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 611, 125785.
53 Huang Y M, Li J, Du P Y, et al. Journal of Colloid and Interface Science, 2021, 597, 206.
54 Wang A Q, Chen Y W, Zheng Z K, et al. Chemical Engineering Journal, 2021, 411, 128497.
55 Zuo S J, Jin X M, Wang X W, et al. Applied Catalysis B: Environmental, 2021, 282, 119551.
56 Wang N N, Zheng T, Zhang G S, et al. Journal of Environmental Chemical Engineering, 2016, 4(1), 762.
57 Wang J, Liu C, Qi J W, et al. Environmental Pollution,2018,243,1068.
58 Liu C, Li J S, Qi J W, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13167.
59 Zeng T, Zhang X L, Wang S H, et al. Environmental Science & Techno-logy, 2015, 49(4), 2350.
60 Zhang S, Hedtke T, Zhu Q H, et al. Environmental Science & Technology, 2021, 55(13), 9266.
61 Enami S, Sakamoto Y, Colussi A J. Proceedings of the National Academy of Sciences of the United States of America Process, 2014, 111(2), 623.
62 Buda F, Ensing B, Gribnau M C M, et al. Chemistry-A European Journal, 2001, 7(13), 2775.
63 Chen Y, Zhang G, Liu H J, et al. Angewandte Chemie International Edition, 2019, 58(24), 8134.
64 Guo D L, Liu Y B, Ji H D, et al. Environmental Science & Technology, 2021, 55(6), 4045.
65 Li C X, Peng W, Fang Z D, et al. Materials Reports A:Review Papers, 2018, 32(7), 2223(in Chinese).
李晨旭, 彭伟, 方振东, 等. 材料导报:综述篇,2018,32(7),2223.
66 Zhang M, Xiao C M, Yan X, et al. Environmental Science & Technology, 2020, 54(16), 10289.
67 Chen M R, Ma K K, Zhou L. Industrial Water Treatment, 2022, 42(6), 109(in Chinese).
陈明如, 马可可, 周律. 工业水处理, 2022, 42(6), 109.
68 Xu J, Wang X R, Pan F, et al. Chemical Engineering Journal, 2018, 353, 542.
69 Guo D L, Yao Y, You S J, et al. Applied Catalysis B: Environmental, 2022, 309, 121289.
70 Zong Y, Shao Y F, Zeng Y Q, et al. Environmental Science & Technology, 2021, 55(11), 7634.
71 Awfa D, Ateia M, Fujii M, et al. Water Research, 2018, 142, 26.
72 Ren Y F, Guo D L, Zhao Z Y, et al. Chemical Engineering Journal, 2022, 435, 134832.
73 Du D, Shi W, Wang L Z, et al. Applied Catalysis B: Environmental, 2017, 200, 484.
74 Wang H J, Li X, Zhao X X, et al. Chinese Journal of Catalysis, 2022, 43(2), 178.
[1] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[2] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[3] 丁琳, 王鹏翔, 刘浩, 熊谟鹏, 王慧凌. 功能化金属-有机框架材料吸附去除废水中铅离子的研究进展[J]. 材料导报, 2022, 36(20): 22070013-11.
[4] 孙雪梓, 王崇臣, 李渝航. MIL-53(Al)基功能材料的制备及在水处理中的应用[J]. 材料导报, 2022, 36(20): 22070231-9.
[5] 王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
[6] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[7] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[8] 熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波. 基于零价铁的高级氧化技术与装备[J]. 材料导报, 2021, 35(21): 21012-21021.
[9] 附青山, 张磊, 张伟, IsmailPirMuhammad, 陈雪丹, 龚敏, 何平, 王祖波. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11099-11109.
[10] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[11] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[12] 李义豪, 吴平霄, 姜璐, 吴沂晓. 高铁酸盐在环境修复中的应用综述[J]. 材料导报, 2020, 34(19): 19003-19009.
[13] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[14] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[15] 吴涛, 毛丽莉, 王海增. Mg/Fe-LDHO/PES复合膜吸附材料的制备与除氟性能*[J]. 《材料导报》期刊社, 2017, 31(14): 26-30.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed