Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22070013-11    https://doi.org/10.11896/cldb.22070013
  新型环境功能材料 |
功能化金属-有机框架材料吸附去除废水中铅离子的研究进展
丁琳1,2,*, 王鹏翔1,2, 刘浩2, 熊谟鹏1,2, 王慧凌1,2
1 重金属污染物控制与资源化国家地方联合工程研究中心,南昌 330063
2 南昌航空大学环境与化学工程学院,南昌 330063
Research Progress in Functionalized Metal-Organic Frameworks Materials for Adsorptive Removal of Lead Ions from Wastewater
DING Lin1,2,*, WANG Pengxiang1,2, LIU Hao2, XIONG Mopeng1,2, WANG Huiling1,2
1 National-Local Joint Engineering Research Center for Heavy Metal Pollutant Control and Resource Utilization, Nanchang 330063, China
2 College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 4494KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含铅废水未经处理直接排放到环境中,会对生态系统和人类健康造成严重危害。因此,如何高效、绿色低碳处理含铅废水是目前亟需解决的关键问题之一。金属-有机框架(MOFs)材料因具有结构可调、易于合成、比表面积大和官能团密度高等特点,近年来在吸附去除废水中Pb2+的领域取得了众多研究进展。本文系统探讨了功能化MOFs材料的结构和组成特征,对比了不同类型功能化MOFs对水中Pb2+的吸附性能和吸附规律,阐述了MOFs材料对Pb2+的吸附机理,最后着重分析了MOFs材料在实际吸附去除Pb2+应用中存在的挑战,并展望了未来该领域的重点研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁琳
王鹏翔
刘浩
熊谟鹏
王慧凌
关键词:  金属-有机框架材料  功能化  吸附  铅离子  水处理    
Abstract: Lead is one type of highly poisonous pollutant whose exposure to the aquatic environment seriously threatens the ecosystem and human health. Therefore, treating lead-containing wastewater efficiently, green, and low-carbon is a critical issue that urgently needs to be solved. In recent years, metal-organic frameworks (MOFs) have made numerous research advances in the field of Pb2+ removal from wastewater by adsorption because of their tunable structure, easy synthesis, large specific surface area and high density of functional groups. In this paper, the structure and composition characteristics of functionalized MOFs materials are systematically discussed, the adsorption properties and laws of different types of functionalized MOFs on Pb2+ in water are compared, and the adsorption mechanism of MOFs materials on Pb2+ is expounded. Finally, the challenges in the practical application of Pb2+ adsorption and removal of MOFs are emphatically analyzed, and the key research directions in this field have been prospected for the future.
Key words:  metal-organic frameworks materials    functionalization    adsorption    lead ions    water treatment
发布日期:  2022-10-26
ZTFLH:  X52  
基金资助: 国家自然科学基金(52100147);江西省教育厅科学技术研究项目(DA202102159)
通讯作者:  *dinglin_hust@126.com   
作者简介:  丁琳,南昌航空大学环境与化学工程学院讲师、硕士研究生导师。2020年华中科技大学环境工程专业博士毕业。目前主要从事重金属/有机物的选择性去除与定向资源化等方面的研究工作。目前在Environmental Science & Technology、ACS Applied Materials & Interfaces、Chemical Engineering Journal、Environmental Science: Nano等国际知名期刊发表SCI论文13篇,参编英文专著1部,主持国家省厅级课题4项,授权国家发明专利8项。
引用本文:    
丁琳, 王鹏翔, 刘浩, 熊谟鹏, 王慧凌. 功能化金属-有机框架材料吸附去除废水中铅离子的研究进展[J]. 材料导报, 2022, 36(20): 22070013-11.
DING Lin, WANG Pengxiang, LIU Hao, XIONG Mopeng, WANG Huiling. Research Progress in Functionalized Metal-Organic Frameworks Materials for Adsorptive Removal of Lead Ions from Wastewater. Materials Reports, 2022, 36(20): 22070013-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070013  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22070013
1 Becker F, Marcantonio F, Datta S, et al. Environmental Research, 2022, 212, 113307.
2 Wang S Y, Yang S J, Zhang H, et al. Agriculture and Technology, 2022, 42(9), 78(in Chinese).
王思远,杨树俊,张贺, 等. 农业与技术, 2022, 42(9), 78.
3 Bai L, Wang Y, Guo Y, et al. Journal of Environmental Health, 2016, 78, 84.
4 Sun X P, Lin L, Zhang X P. Territory & Natural Resources Study, 2013(1), 57(in Chinese).
孙雪萍, 林琳, 张雪萍. 国土与自然资源研究, 2013(1), 57.
5 Charkiewicz A E, Backstrand J R. International Journal of Environmental Research and Public Health, 2020, 17(12), 4385.
6 Maxwell E D, Neumann C M. Toxicological and Environmental Chemi-stry, 2008, 90(2), 301.
7 Cai B C. Chemical Enterprise Management, 2015(33), 205(in Chinese).
蔡秉成. 化工管理, 2015(33), 205.
8 Hanna-Attisha M, LaChance J, Sadler R C, et al. American Journal of Public Health, 2016, 106(2), 283.
9 Yi H E, Wei W, He D, et al. Chinese Journal of Environmental Engineering, 2021, 15(6), 2018.
10 Ma S H, He X H. Water & Wastewater Engineering, 2003, 29(9), 89(in Chinese).
马世豪, 何星海. 给水排水, 2003, 29(9), 89.
11 Sadeghi M, Karimi H, Alijanvand M H. Environmental Engineering & Management Journal, 2017, 16(7), 1563.
12 Chen Q, Yao Y, Li X, et al. Journal of Water Process Engineering, 2018, 26, 289.
13 Li F, Li R, Wen J. Chemical Engineer, 2022, 36(1), 47(in Chinese).
李凤, 李茹, 文静. 化学工程师, 2022, 36(1), 47.
14 Shi Q, Sterbinsky G E, Prigiobbe V, et al. Langmuir, 2018, 34(45), 13565.
15 Fiorito E, Porcedda G E, Brundu L, et al. Chemosphere, 2022, 296, 133897.
16 Shahriari T, Karbassi A R, Reyhani M. International Journal of Environmental Science and Technology, 2019, 16(8), 4159.
17 Rahmanian B, Pakizeh M, Maskooki A. Korean Journal of Chemical Engineering, 2012, 29(6), 804.
18 Shah D B, Phadke A V, Kocher W M. Journal of the Air & Waste Ma-nagement Association, 1995, 45(3), 150.
19 Kumar V, Wanchoo R K, Toor A P. Industrial & Engineering Chemistry Research, 2021, 60(24), 8901.
20 Bhatia M, Satish Babu R, Sonawane S H, et al. International Journal of Environmental Science and Technology, 2017, 14(5), 1135.
21 Chen P, Tao H C, Guo C H, et al. Mining and Metallurgy, 2021, 30(6), 109(in Chinese).
陈萍, 陶恒畅, 郭超华, 等. 矿冶, 2021, 30(6), 109.
22 Gu M, Zhong Y, Wang L, et al. Journal of Environmental Chemical Engineering, 2021, 9(6), 106516.
23 Liu W. Screening of lead-resistant bacteria and its effect on lead removal from lead-containing wastewater. Master’s Thesis, Shaanxi Normal University, China, 2013(in Chinese).
刘雯. 抗铅细菌的筛选及对含铅废水中铅去除作用的研究. 硕士学位论文, 陕西师范大学, 2013.
24 Hegazy M H, Essam A, Elnaggar A Y, et al. Water, 2021, 13(24), 3642.
25 Efome J E, Rana D, Matsuura T, et al. Chemical Engineering Journal, 2018, 352, 737.
26 Manos M J, Kanatzidis M G. Journal of the American Chemical Society, 2012, 134(39), 16441.
27 Yang S, Hu J, Chen C, et al. Environmental Science & Technology, 2011, 45(8), 3621.
28 Shi Q, Sterbinsky G E, Prigiobbe V, et al. Langmuir, 2018, 34(45), 13565.
29 Largitte L, Pasquier R. Chemical Engineering Research and Design, 2016, 109, 495.
30 Zhang M, Jia F, Dai M, et al. Applied Surface Science, 2018, 455, 258.
31 Xiao L, Zhang G, Zhang Q, et al. Journal of Central South University of Technology, 2000, 7(4), 191.
32 Furukawa H, Cordova K E, O’Keeffe M, et al. Science, 2013, 341(6149), 1230444.
33 Eddaoudi M, Kim J, Rosi N, et al. Science, 2002, 295(5554), 469.
34 Stock N, Biswas S. Chemical Reviews, 2012, 112(2), 933.
35 Xu G R, An Z H, Xu K, et al. Coordination Chemistry Reviews, 2021, 427, 213554.
36 Ding L. Study on the controllable preparation of zirconium-based metal-organic frameworks and mechanism of selective capture of Ag(I) from wastewater. Ph.D. Thesis, Huazhong University of Science and Techno-logy, China, 2020(in Chinese).
丁琳. 锆基金属有机框架材料的可控制备及其选择性捕获废水中Ag(I)机理研究. 博士学位论文, 华中科技大学, 2020.
37 Zhang H, Li G L, Zhang K G, et al. Acta Chimica Sinica, 2017, 75(9), 841(in Chinese).
张贺, 李国良, 张可刚, 等. 化学学报, 2017, 75(9), 841.
38 Cavka J H, Jakobsen S, Olsbye U, et al. Journal of the American Chemical Society, 2008, 130(42), 13850.
39 Tran N T, Vo T K, Kim J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126242.
40 Lee Y R, Jang M S, Cho H Y, et al. Chemical Engineering Journal, 2015, 271, 276.
41 Zhang L H, Zhu Y, Lei B R, et al. Inorganic Chemistry Communications, 2018, 94, 27.
42 Huang Y, Lin Z, Fu H, et al. ChemSusChem, 2014, 7(9), 2647.
43 Van de Voorde B, Bueken B, Denayer J, et al. Chemical Society Reviews, 2014, 43(16), 5766.
44 Kobielska P A, Howarth A J, Farha O K, et al. Coordination Chemistry Reviews, 2018, 358, 92.
45 He Y, Shang J, Gu Q, et al. Chemical Communications, 2015, 51(79), 14716.
46 Chen C X, Wei Z W, Jiang J J, et al. Journal of the American Chemical Society, 2017, 139(17), 6034.
47 Sun C Y, Qin C, Wang X L, et al. Expert Opinion on Drug Delivery, 2013, 10(1), 89.
48 Lustig W P, Mukherjee S, Rudd N D, et al. Chemical Society Reviews, 2017, 46(11), 3242.
49 Zhang X, Wang B, Alsalme A, et al. Coordination Chemistry Reviews, 2020, 423, 213507.
50 Lin X, Jia J, Zhao X, et al. Angewandte Chemie International Edition, 2006, 118(44), 7518.
51 Hu Y, Xiang S, Zhang W, et al. Chemical Communications, 2009 (48), 7551.
52 Ma S, Simmons J M, Sun D, et al. Inorganic Chemistry, 2009, 48(12), 5263.
53 Ma S, Sun D, Simmons J M, et al. Journal of the American Chemical Society, 2008, 130(3), 1012.
54 Mazaj M, Čendak T, Buscarino G, et al. Journal of Materials Chemistry A, 2017, 5(42), 22305.
55 Goyal P, Paruthi A, Menon D, et al. Chemical Engineering Journal, 2022, 430, 133088.
56 Férey G, Serre C, Mellot-Draznieks C, et al. Angewandte Chemie International Edition, 2004, 116(46), 6456.
57 Férey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309(5743), 2040.22070013-22070013-
58 Huang X C, Lin Y Y, Zhang J P, et al. Angewandte Chemie Internatio-nal Edition, 2006, 45(10), 1557.
59 Katz M J, Brown Z J, Colón Y J, et al. Chemical Communications, 2013, 49(82), 9449.
60 Lyu X L, Yuan S, Xie L H, et al. Journal of the American Chemical Society, 2019, 141(26), 10283.
61 Chen Y, Wang B, Wang X, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 27027.
62 Fu Q S, Zhang L, Zhang W, et al. Materials Reports B:Research Papers, 2021, 35(6), 11100(in Chinese).
附青山, 张磊, 张伟, 等. 材料导报:研究篇, 2021, 35(6), 11100.
63 Zhang J, Xiong Z, Li C, et al. Journal of Molecular Liquids, 2016, 221, 43.
64 Xiong C, Wang S, Hu P, et al. ACS Applied Materials & Interfaces, 2020, 12(6), 7162.
65 Ye M F, Cao Y Z, Ding R H, et al. Chemical Industry Times, 2019, 33(2), 28(in Chinese).
叶明富, 曹云钟, 丁仁浩, 等. 化工时刊, 2019, 33(2), 28.
66 Ahmadijokani F, Tajahmadi S, Bahi A, et al. Chemosphere, 2021, 264, 128466.
67 Tran C C, Dong H C, Truong V T N, et al. Dalton Transactions, 2022, 51(19), 7503.
68 Mehdinia A, Jahedi Vaighan D, Jabbari A. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 3176.
69 Alqadami A A, Khan M A, Siddiqui M R, et al. Microporous and Mesoporous Materials, 2018, 261, 198.
70 Wang Y, Chen H, Tang J, et al. Food Chemistry, 2015, 181, 191.
71 Li Y H, Wang C C, Zeng X, et al. Chemical Engineering Journal, 2022, 442, 136276.
72 Luo X, Ding L, Luo J. Journal of Chemical & Engineering Data, 2015, 60(6), 1732.
73 Morcos G S, Ibrahim A A, El-Sayed M M H, et al. Journal of Environmental Chemical Engineering, 2021, 9(3), 105191.
74 Nimbalkar M N, Bhat B R. Journal of Environmental Chemical Enginee-ring, 2021, 9(5), 106216.
75 Hasankola Z S, Rahimi R, Safarifard V. Inorganic Chemistry Communications, 2019, 107, 107474.
76 Karimi M A, Masrouri H, Karami H, et al. Journal of the Chinese Che-mical Society, 2019, 66(10), 1327.
77 Pournara A D, Rapti S, Lazarides T, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105474.
78 Zhu H, Yuan J, Tan X, et al. Environmental Science: Nano,2019,6(1), 261.
79 Wang C, Lin G, Xi Y, et al. Journal of Molecular Liquids, 2020, 317, 113896.
80 Fei X. Preparation and properties of doped mesoporous TiO2 and its composites with MOF. Master’s Thesis, Hefei University of Technology, China, 2013(in Chinese).
费霞. 掺杂介孔TiO2及TiO2/MOF复合材料的制备和性能研究. 硕士学位论文, 合肥工业大学, 2013.
81 Zou F, Yu R, Li R, et al. Chemphyschem, 2013, 14(12), 2825.
82 Roztocki K, Jedrzejowski D, Hodorowicz M, et al. Inorganic Chemistry, 2016, 55(19), 9663.
83 Liang S J, Han H J, Zhai Y, et al. Modern Chemical Industry, 2017, 37(3), 137(in Chinese).
梁淑君, 韩海军, 翟燕, 等. 现代化工, 2017, 37(3), 137.
84 Li H, Eddaoudi M, O′Keeffe M, et al. Nature, 1999, 402(6759),276.
85 Huang Z, Zhao M, Wang C, et al. ACS Applied Materials & Interfaces, 2020, 12(37), 41294.
86 Ke F, Jiang J, Li Y, et al. Applied Surface Science, 2017, 413, 266.
87 Rego R M, Kurkuri M D, Kigga M. Chemosphere, 2022, 302, 134845.
88 Fu L, Wang S, Lin G, et al. Journal of Cleaner Production, 2019, 229, 470.
89 Abdelmoaty A S, El-Wakeel S T, Fathy N, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 302, 1.
90 Ali S, Zuhra Z, Ali S, et al. Chemosphere, 2021, 284, 131305.
91 Wang C, Xiong C, He Y, et al. Chemical Engineering Journal, 2021, 415, 128923.
92 Park K S, Ni Z, Côté A P, et al. Proceedings of the National Academy of Sciences, 2006, 103(27),10186.
93 Ahmad K, Ashfaq M, Shah S S A, et al. Food and Chemical Toxicology, 2021, 149, 112008.
94 Huang Y, Zeng X, Guo L, et al. Separation and Purification Technology, 2018, 194, 462.
95 Huang L, Wu B, Wu Y, et al. Journal of Colloid and Interface Science, 2020, 565, 465.
96 Chen Y, Bai X, Ye Z. Nanomaterials, 2020, 10(8), 1481.
97 Zhang H, Hu X, Li T, et al. Journal of Hazardous Materials, 2022, 429, 128271.
98 Babel S, Kurniawan T A. Journal of Hazardous Materials, 2003, 97(1-3), 219.
99 Mohan D, Pittman C U. Journal of Hazardous Materials, 2007, 142(1-2), 1.
100 Bailey S E, Olin T J, Bricka R M, et al. Water Research, 1999, 33(11), 2469.
101 Ahluwalia S S, Goyal D. Bioresource Technology,2007,98(12),2243.
102 Lyu S W, Liu J M, Li C Y, et al. Chemical Engineering Journal, 2019, 375, 122111.
103 Zhang H, Wen J, Fang Y, et al. Journal of Colloid and Interface Science, 2019, 551, 155.
104 Gu Y, Wang Y, Li H, et al. Chemical Engineering Journal, 2020, 387, 124141.
105 Zhang Y, Zheng H, Zhang P, et al. Journal of Hazardous Materials, 2021, 408, 124917.
106 Wang R D, He L, Zhu R R, et al. Journal of Hazardous Materials, 2022, 427, 127852.
107 Wang Y, Li M, Hu J, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2022, 633, 127852.
108 Wang H, Wang S, Wang S X, et al. Journal of Hazardous Materials, 2022, 425, 127771.
109 Chen J, Liu K, Jiang M, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2019, 568, 461.
110 Nqombolo A, Mpupa A, Gugushe A S, et al. Environmental Science and Pollution Research, 2019, 26(4), 3330.
111 Abdel-Magied A F, Abdelhamid H N, Ashour R M, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107467.
112 Wang C, Sun Q, Zhang L, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107911.
113 Fu Q, Zhou S, Wu P, et al. Journal of Solid State Chemistry, 2022, 307, 122823.
114 Motaghi H, Arabkhani P, Parvinnia M, et al. New Journal of Chemistry, 2022, 46(9), 4449.
115 Han B, Xiao X, Zhang L, et al. JCIS Open, 2021, 1, 100003.
116 Uthappa U T, Sriram G, Arvind O R, et al. Applied Surface Science, 2020, 528, 146974.
117 Ricco R, Konstas K, Styles M J, et al. Journal of Materials Chemistry A, 2015, 3(39), 19822.
118 Abdelhameed R M, Ismail R A, El-Naggar M, et al. Microporous and Mesoporous Materials, 2019, 279, 26.
119 Liang X X, Wang N, Qu Y L, et al. Molecules, 2018, 23(7), 1524.
120 Zhang B L, Qiu W, Wang P P, et al. Chemical Engineering Journal, 2020, 385, 123507.
121 Chen Y, Li S, Pei X, et al. Angewandte Chemie International Edition, 2016, 55(10), 3419.
122 Neves P, Gomes A C, Amarante T R, et al. Microporous and Mesoporous Materials, 2015, 202, 106.
123 Shekhah O, Liu J, Fischer R A, et al. Chemical Society Reviews, 2011, 40(2), 1081.
124 Zhao P, Li R, Wu W, et al. Composites Part B, Engineering, 2019, 176, 107208.
125 Ostermann R, Cravillon J, Weidmann C, et al. Chemical Communications, 2011, 47(1), 442.
126 Kanehata M, Ding B, Shiratori S. Nanotechnology, 2007, 18(31), 315602.
127 Shrivastav V, Sundriyal S, Goel P, et al. Coordination Chemistry Reviews, 2019, 393, 48.
128 Cheng P, Wang C, Kaneti Y V, et al. Langmuir, 2020, 36(16), 4231.
129 Yu C X, Wang K Z, Li X J, et al. Crystal Growth & Design, 2020, 20(8), 5251.
130 Ahmad K, Nazir M A, Qureshi A K, et al. Materials Science and Engineering, B, 2020, 262, 114766.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[3] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[4] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[5] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[6] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[7] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[8] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[9] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[10] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[11] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[12] 李小燕, 付晓辉, 李冠超, 王昱莹, 黄希, 刘小亮, 胡伟芳, 刘义保. 岩棉负载纳米零价铁去除溶液中U(Ⅵ)的性能和机理[J]. 材料导报, 2022, 36(20): 22040131-7.
[13] 郭东丽, 赵志远, 尤世界, 刘艳彪. 纳米限域催化剂在高级氧化水处理中的应用研究进展[J]. 材料导报, 2022, 36(20): 22050273-7.
[14] 孙雪梓, 王崇臣, 李渝航. MIL-53(Al)基功能材料的制备及在水处理中的应用[J]. 材料导报, 2022, 36(20): 22070231-9.
[15] 贾冉, 许士才, 刘汉平, 刘辉兰, 乔梅, 刘国锋. 石墨烯光致掺杂研究进展[J]. 材料导报, 2022, 36(18): 20080248-14.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed