Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21040121-8    https://doi.org/10.11896/cldb.21040121
  高分子与聚合物基复合材料 |
基于壳聚糖的分子印迹技术研究及应用
冯颖, 李齐雪, 邵娟, 张建伟, 董鑫*, 张庆瑾
沈阳化工大学机械与动力工程学院, 沈阳 110142
Research and Application of Molecular Imprinting Technology Based on Chitosan
FENG Ying, LI Qixue, SHAO Juan, ZHANG Jianwei, DONG Xin*, ZHANG Qingjin
School of Mechanical and Energy Power Engineering,Shenyang University of Chemical Technology, Shenyang 110142, China
下载:  全 文 ( PDF ) ( 2560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分子印迹技术是一种新兴的分子识别技术,该技术可以制备具有特异选择性识别能力的聚合物,凭借其高度的专一性、稳定性以及可重复性等特点,逐渐成为了研究热点。壳聚糖是一种环境友好、来源丰富且可循环再生的天然高分子化合物,其分子结构中的氨基等官能团具有较强的活性,使壳聚糖具有生物降解性、细胞亲和性和生物效应等多种独特的性质,在医学、食品、环保等领域广泛应用。壳聚糖的官能团反应活性强,易进行改性或化学修饰,因此以壳聚糖及其衍生物为功能单体或载体,结合分子印迹技术,易制备具有理想的亲和性和稳定性、高印迹效率、强选择性的新型分子印迹聚合物,从而提高壳聚糖材料的性能,拓宽其应用领域和范围。
本文根据近年来国内外学者在壳聚糖分子印迹改性领域的研究进展,对壳聚糖及其衍生物在分子印迹聚合物制备中的作用、分子印迹聚合物制备方法以及常用交联剂的类型进行总结,详细阐述了壳聚糖分子印迹聚合物在重金属污染物处理、生物医学、固相萃取、蛋白质识别、电化学传感器、手性物质分离等方面的应用,分析了壳聚糖分子印迹聚合物在各领域应用的优缺点,并展望了壳聚糖分子印迹技术的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯颖
李齐雪
邵娟
张建伟
董鑫
张庆瑾
关键词:  壳聚糖  分子印迹技术  聚合物  功能单体  载体    
Abstract: Molecular imprinting technology is a new molecular recognition technology by which the polymers with specific and selective recognition ability could be prepared. With high specificity, stability and repeatability, it has gradually become the research hotspot. Chitosan is an environment-friendly, abundant and recyclable natural polymer compound. The amino functional groups in molecular structure of chitosan have strong activity, which makes chitosan have various unique properties such as biodegradability, cell affinity and biological effects. It is widely used in the fields of medicine, food and environmental protection. The functional group of chitosan has strong reaction activity and is easy to be chemically modification. Combined with molecular imprinting technology, the chitosan and its derivatives could be taken as functional monomers or carriers for preparing new molecular imprinting polymers with ideal affinity and stability, high imprinting efficiency and strong selectivity, which can improve the properties of chitosan materials and broaden its application field and scope.
According to the research progress in the field of molecular imprinting modification of chitosan, the role of chitosan and its derivatives in the preparation of molecular imprinting polymers, the preparation methods of molecular imprinting polymers and the types of common crosslinking agents were summarized. The applications of chitosan molecular imprinting polymers in the treatment of heavy metal pollutants, biomedicine, solid phase extraction, protein recognition, electrochemical sensor and chiral material separation were expounded in detail. The advantages and disadvantages of chitosan molecular imprinting polymers in various fields were analyzed. The development direction of chitosan molecular imprinting technology was prospected.
Key words:  chitosan    molecular imprinting technique    polymer    functional monomer    carrier
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  O636.1+2  
基金资助: 国家自然科学基金(21406142);辽宁省自然科学基金(2020-MS-230);辽宁省教育厅科学研究项目(LJ2020036);沈阳市中青年科技人才项目(RC190323)
通讯作者:  *dongxin1106@syuct.edu.cn   
作者简介:  冯颖,沈阳化工大学教授、硕士研究生导师。2005年毕业于天津大学,获工学博士学位。主要从事非均相分离技术、工艺和新材料的研究,主持完成国家自然科学基金项目、辽宁省自然科学基金项目等多项科研课题。在《化工进展》《复合材料学报》《精细化工》等核心期刊发表论文30篇。
董鑫,沈阳化工大学讲师、硕士研究生导师。2019年9月在大连理工大学化工学院取得博士学位。主要从事生物膜多孔介质材料中流体流动行为与输运特性、环境流体多相流传递理论与技术的研究工作。曾先后参与国家自然科学基金项目、辽宁省科技厅项目的研究工作,主持辽宁省自然科学基金项目。在Chemical Engineering Research and Design、Chemical Engineering and Technology、 《化工学报》等国内外核心期刊发表研究论文20篇。
引用本文:    
冯颖, 李齐雪, 邵娟, 张建伟, 董鑫, 张庆瑾. 基于壳聚糖的分子印迹技术研究及应用[J]. 材料导报, 2022, 36(17): 21040121-8.
FENG Ying, LI Qixue, SHAO Juan, ZHANG Jianwei, DONG Xin, ZHANG Qingjin. Research and Application of Molecular Imprinting Technology Based on Chitosan. Materials Reports, 2022, 36(17): 21040121-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040121  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21040121
1 Linh C N, Duvanova O V, Yen V H, et al. Journal of Molecular Mode-ling, 2020, 26(8), 194.
2 Chen Z J, Chen Y F, Zheng J, et al. Materials Reports, 2018, 32(Z1), 169 (in Chinese).
陈智捷, 陈燕芳, 郑军, 等. 材料导报, 2018, 32(Z1), 169.
3 Yang S, Wang Y Z, Xu M L, et al. Analytical Methods, 2013, 5(20), 5471.
4 Monier M, Abdel-latif D A. International Journal of Biological Macromo-lecules, 2017, 105(1), 777.
5 Azizkhani S, Mahmoudi E, Emami A, et al. Science and Technology Indonesia, 2018, 3(4), 141.
6 Li C, Zhang Y Q, Zhang Q. New Chemical Materials, 2015, 43(7), 51 (in Chinese).
李超, 张玉琴, 张强.化工新型材料, 2015, 43(7), 51.
7 Mo G C, He X X, Zhou C Q, et al. Biosensors & Bioelectronics, 2018, 126, 558.
8 Dong X Z, Ma Y, Hou C P, et al. Polymer International, 2019, 68(5), 955.
9 Huang L M, Lu Y Q, Wu Z Y, et al. Environments, 2017, 4(2), 30.
10 Xu L, Zhao Z X, Huang Y A, et al. Molecules, 2020, 25(2), 312.
11 Lyu X H. Preparation and properties of modified chitosan-based ion imprinted composite adsorbent. Ph.D. Thesis, Xinjiang University, China, 2019 (in Chinese).
吕晓华. 改性壳聚糖基离子印迹复合吸附材料的制备及性能研究. 博士学位论文, 新疆大学, 2019.
12 Chen J L, Gao P, Wang H, et al. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 2018, 6(15), 3937.
13 Silva S S, Mano J F, Reis R L. Green Chemistry, 2017, 19(5), 1208.
14 Guo M, Wang C G, Yao S S, et al. Journal of Chemical Engineering of Chinese Universities, 2015, 29(4), 913.
15 Ma Y, Liu C, Zeng Q, et al. Electroanalysis, 2020, 32(5), 923.
16 Li Q, Xia M X, Wang X X, et al. Materials Reports, 2018, 32(Z2), 276 (in Chinese).
李倩,夏美霞,王晓旭, 等. 材料导报, 2018, 32(Z2), 276.
17 Di R P, Zhang Y, Wu Z L, et al. Journal of Molecular Liquids, 2020, 302, 112523.
18 Surya S G, Khatoon S, Lahcena A A, et al. RSC Advances, 2020, 10(22), 12823.
19 Wang R Y, Cui Y R, Hu F, et al. Journal of Chromatography A, 2019,1591, 62.
20 Xu F F, Duan Y Q, Zhang H H, et al. Progress in Chemical Industry, 2011, 30(5), 1033.
徐菲菲, 段玉清, 张海晖,等. 化工进展, 2011, 30(5), 1033.
21 Su L Q, Gao Y, Qin S L, et al. Analytical Letters, 2016, 49(14), 2177.
22 Guo H, Yuan D Y, Fu G Q. Journal of Colloid & Interface Science, 2015, 440, 53.
23 Zhang C J, Wang Y Z, Guo J X, et al. RSC Advances, 2015, 5(128), 106197.
24 Hassanzadeh M, Ghaemy M, Ahmadi S. Macromolecular Bioscience, 2016, 16(10), 1515.
25 Yang J, Zhu M, Chu H, et al. Materials Technology, 2017, 32(11), 647.
26 Rahangdale D, Archana G, Kumar A. Adsorption Science & Technology, 2016, 34(7-8), 405.
27 Nishad P A, Bhaskarapillai A, Velmurugan S, et al. Carbohydrate Polymers, 2012, 87(4), 2690.
28 Zhang L, Zhong L L, Yang S W, et al. Colloid and Polymer Science, 2015, 293(9), 2497.
29 Liu F F, Liu Y, Xu Y, et al. Journal of Environmental Chemical Engineering, 2015, 3(2), 1061.
30 Cai Y Y, Zheng L C, Fang Z Q. RSC Advances, 2015, 5(118), 97435.
31 Hastuti B, Siswanta D. Bulletin of Materials Science, 2019, 42(4), 1.
32 Rahangdale D, Kumar A, Archana G, et al. Journal of Molecular Recognition Journal of Molecular Recognition, 2018, 31(3), 2630.
33 Zhang Y Q, Tan X, Liu X, et al. ACS Sustainable Chemistry and Engineering, 2019, 7(3), 3127.
34 Mabrouk M, Hammad S F, Abdella A A, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118668.
35 Jiao Z, Li J W, Mo L J, et al. Mikrochimica Acta: an International Journal for Physical and Chemical Methods of Analysis, 2018, 185(10), 473.
36 Ou H X, Chen Q H, Pan J M, et al. Journal of Hazardous Materials, 2015, 289, 28.
37 Zheng X F, Liao Q, Yang H, et al. Scientific Reports, 2016, 6, 21409.
38 Wang P, Zhang A X, Jin Y, et al. RSC Advances, 2014, 4(50), 26063.
39 Madikizela L M, Ncube S, Chimuka L. Chromatographia, 2019, 82(8), 1171.
40 Zhang H H, Xu F F, Duan Y Q, et al. Advanced Materials Research, 2013, 781-784, 756.
41 Ma X L, Chen R Y, Zheng X, et al. Polymer Bulletin, 2011, 66(6), 853.
42 Chen S, Luo Z M, Ma X L, et al. Analytical Letters, 2012, 45(16), 2300.
43 Bektaşoğlu E,Özkütük E B, Ersöz A, et al. Spectroscopy Letters, 2014, 47(3), 168.
44 Yuan B, Yang X Q, Xue L W, et al. Bioresource Technology, 2016, 222, 14.
45 Liu Q Q, Zhao Y, Pan J F, et al. Separation and Purification Technology, 2016, 164, 70.
46 Muhammad P, Tu X Y, Liu J, et al. ACS Applied Materials and Interfaces, 2017, 9(13), 12082.
47 Ji X G, Huang J H, Yang M Q, et al. Journal of Chinese Institute of Food Science and Technology, 2018, 18(7), 247 (in Chinese).
纪小国, 黄继红, 杨铭乾, 等.中国食品学报, 2018, 18(7), 247.
48 Gao T, Guo M J, Fan Z, et al. Journal of Tianjin University of Science & Technology, 2010, 25(1), 20.
49 Dan R, Wang Y Z, Du L, et al. Analyst, 2013, 138(12), 3433.
50 Su L Q, Han Y, Wen Y, et al. Chemical Research and Application, 2013, 25(4), 441 (in Chinese).
苏立强, 韩宇, 温雨, 等.化学研究与应用, 2013, 25(4), 441.
51 Kalecki J, Iskierko Z, Cieplak M, et al. ACS Sensors, 2020, 5(12), 3710.
52 Zhang Y, Deng C Y, Liu S, et al. Angewandte Chemie International Edition, 2015, 54(17), 5157.
53 Jiang L, Shen X. Chinese Science Bulletin, 2019, 64(13), 1380.
54 Zeng Q, Huang X, Ma M H. International Journal of Electrochemical Science, 2017, 12(5), 3965.
55 Lee M H, Thomas J L, Lai M Y, et al. Langmuir, 2014, 30(46), 14014.
56 Kitagishi H, Jiromaru M, Hasegawa N. ACS Applied Bio Materials, 2020, 3(8), 4902.
57 Srivastava J, Gupta N, Kushwaha A, et al. Polymer Bulletin, 2019, 76(9), 4431.
58 Zouaoui F, Bourouina-Bachab S, Bourouina M, et al. TrAC Trends in Analytical Chemistry, 2020, 130, 115982.
59 Zhang J, Lei J P, Ju H X, et al. Analytica Chimica Acta, 2013,786(13), 16.
60 Gan T, Lyu Z, Sun Y Y, et al. Journal of Applied Electrochemistry, 2016, 46(3), 389.
61 Ma L Y, Miao S S, Lu F F, et al. Analytical Letters, 2017, 50(15), 2369.
62 Bi H, Wu Y H, Wang Y H, et al. Journal of Electroanalytical Chemistry, 2020, 870, 114216.
63 Monier M, El-sokkary A M A. International Journal of Biological Macromolecules, 2010, 47(2), 207.
64 Monier M, Ayad D M, Wei Y, et al. Biochemical Engineering Journal, 2010, 51(3), 140.
65 Monier M, El-mekabaty A. International Journal of Biological Macromolecules, 2013, 55, 207.
66 Zheng X F, Lian Q, Yang H. RSC Advances, 2014, 4(80), 42478.
67 Xiao X D, Li Z Q, Liu Y, et al. Journal of Separation Science, 2019, 42(23), 3544.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[4] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[5] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[6] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[7] 黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
[8] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[9] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[10] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[11] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[12] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[13] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[14] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[15] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed