Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21110211-6    https://doi.org/10.11896/cldb.21110211
  城市固废材料高效处理及资源化利用 |
市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究
阳济章1,2,3,4,*, 李德念1,2,3,4,*, 谈强5, 廖达秀5, 袁浩然1,2,3,4,*, 陈勇1,2,3,4
1 南方海洋科学与工程广东省实验室(广州),广州 511458
2 中国科学院广州能源研究所,广州 510640
3 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
4 中国科学院可再生能源重点实验室,广州510640
5 广州永兴环保能源有限公司,广州 510640
Preparation of CaO-loaded Municipal Sludge Biochar as Excellent Hybrid Catalyst for Transesterification
YANG Jizhang1,2,3,4,*, LI Denian1,2,3,4,*, TAN Qiang5, LIAO Daxiu5, YUAN Haoran1,2,3,4,*, CHEN Yong1,2,3,4
1 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
3 Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
4 Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
5 Guangzhou Yongxing Environmental Protection Energy Co., Ltd., Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 8921KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以市政污泥生物炭为载体、硝酸钙为钙源,采用浸渍干燥法耦合热解法制备了氧化钙均匀负载的市政污泥生物炭非均相固体碱复合催化剂,并将其用于催化合成生物柴油。进一步探索了甲醇/油物质的量比、反应时间、催化剂用量和温度等因素对该催化剂催化活性的影响。其中,30CaO@SBC-600在醇油物质的量比9∶1、反应时间180 min、催化剂用量7%(质量分数)、反应温度100 ℃时,生物柴油产率达到97.2%,而温度为110 ℃时,产率可高达98.0%。历经10次催化再生后,产率仍保持在85.6%。这种市政污泥生物炭负载氧化钙非均相催化剂在生物柴油合成领域具有巨大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阳济章
李德念
谈强
廖达秀
袁浩然
陈勇
关键词:  市政污泥生物炭  硝酸钙  氧化钙  生物柴油  非均相催化剂    
Abstract: Municipal sludge biochar with surface-anchoredcalcium oxide (CaO@SBC) were facilely prepared following a soaking, drying and pyrolysis process on basis of the municipal sludge biochar matrix. The influences of methanol/oil molar ratio, reaction time, catalyst dosage and temperature on catalytic activity were investigated. Under reaction conditions of the molar ratio of alcohol to oil, the reaction time, the catalyst dosage and the reaction temperature were 9∶1, 180 min, 7wt% and 100 ℃, respectively, the highest biodiesel yield up to 97.2% was achieved with the 30CaO@SBC-600. The biodiesel yield up to 98.0% was achieved in the 110 ℃, and it maintained as high as 85.6% even after ten cycles of consecutively alternate catalysis and regeneration process. Along with renewable and efficient catalyst, this hybrid catalyst offered a novel way for value-added utilization of municipal sludge.
Key words:  municipal sludge biochar    calcium nitrate    calcium oxide    biodiesel    heterogeneous catalyst
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TQ644.5  
基金资助: 国家重点研发计划(2018YFC1901204);广东省自然科学基金 (2019A1515011570;2022A1515011653);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0101);中国科学院青年创新促进会
通讯作者:  *袁浩然,2003年毕业于合肥工业大学热能工程专业,获学士学位;2010年毕业于中国科学院广州能源研究所,获博士学位,同年入职中国科学院广州能源研究所。自2005年以来,一直致力于有机固废能源化与资源化高效清洁利用基础理论研究及技术开发。 近年来在Energy、Chemical Engineering Journal、Bioresource Technology、Energy Conversion and Management、Fuel、Electrochimica Acta、ChemElectroChem、International Journal of Hydrogen Energy等SCI收录期刊上发表论文64篇(第一/通信作者),参与编著《煤炭利用过程中的节能技术》等专著4部,授权国家发明专利20项、PCT 4项;参与“有机固体废弃物资源化与能源化综合利用技术及应用”项目获得2011年国家科技进步二等奖(排名第十)。yuanhr@ms.giec.ac.cn   
作者简介:  阳济章,2017年毕业于温州大学,获硕士学位。自加入南方海洋科学与工程广东省实验室(广州)以来,主要从事固体废弃物高值化利用研究。
李德念,中国科学院广州能源研究所副研究员。2009年6月获武汉理工大学高分子材料与工程学士学位,2014年6月获武汉理工大学材料学博士学位,主要从事有机废物能源化与资源化利用研究。
引用本文:    
阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
YANG Jizhang, LI Denian, TAN Qiang, LIAO Daxiu, YUAN Haoran, CHEN Yong. Preparation of CaO-loaded Municipal Sludge Biochar as Excellent Hybrid Catalyst for Transesterification. Materials Reports, 2023, 37(10): 21110211-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110211  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21110211
1 Sun S D, Guo J J, Duan X. Industrial Crops & Products, 2019, 137, 270.
2 Vahid B R, Haghighi M. Energy Conversion and Management, 2016, 126, 362.
3 Zou X X, Yang J K, Liu Y. China Oils and Fats, 2015, 6(35), 33(in Chinese).
邹晓霞, 杨江科, 刘云. 中国油脂, 2015, 6(35), 33.
4 He G S. Study on solid catalyst transesterification of methanol with vegetable oil to prepare biodiesel. Master's Thesis, Anhui University of Science and Technology, China, 2011(in Chinese).
何国松. 固体催化剂催化甲醇与植物油酯交换合成生物柴油的研究. 硕士学位论文, 安徽理工大学, 2011.
5 Du L X, Li Z, Ding S X, et al. Fuel, 2019, 15(258), 116.
6 Li F Y, Jin F Q, Fan T S, et al. China Oils and Fats, 2013, 6(38), 79(in Chinese).
李丰亚, 靳福全, 范田水, 等. 中国油脂, 2013, 6(38), 79.
7 Ding M. Application of solid catalysts in biodiesel preparation from Jatropha oil. Master's Thesis, Jiangnan University, China, 2015(in Chinese).
丁敏. 固体催化剂在麻疯籽油生物柴油制备中的应用. 硕士学位论文, 江南大学, 2015.
8 Bayat A, Baghdadi M, Bidhendi G N. Energy Conversion and Management, 2018, 177, 395.
9 Viola E, Blasi A, Valerio V, et al. Catalysis Today, 2012, 179, 185.
10 Zhang Y J. Waste mussel shell used as material of catalyst for preparation of biodiesel and study on the combustion dynamics properties of blends fuel. Ph. D. Thesis, Henan University, China, 2014(in Chinese).
张义俊. 煅烧河蚌壳作催化剂制取生物柴油及其燃烧动力学特性研究. 博士学位论文, 河南大学2014.
11 Marinkovic D M, Stankovic M V, Velickovic A V, et al. Renewable and Sustainable Energy Reviews, 2016, 56, 1387.
12 Liu T H, Liu H Q, Chu G, et al. Journal of Fuel Chemistry and Technology, 2021, 49(3), 321(in Chinese).
刘同慧, 刘宏乾, 褚格, 等. 燃料化学学报, 2021, 49(3), 321.
13 Qi H L, Ge K, Ma D P, et al. Chemical Engineering & Equipment, 2017(10), 20(in Chinese).
齐慧丽, 盖轲, 马东平, 等. 化学工程与装备, 2017(10), 20.
14 Wang Y Z, Li D N, Zhao D D, et al. ACS Omega, 2020, 5, 17471.
15 Shan R, Yuan H R, Wang S X, et al. Energy Conversion and Management, 2017, 138, 547.
16 Chen G Y, Shan R, Li S Y, et al. Fuel, 2015, 153, 48.
17 Sozen S, Cokgor E U, Insel G, et al. Waste Manage, 2014, 34(9), 1657.
18 Wu Z X, Jiang Y M, Guo W X, et al. Environmental Technology & Innovation, 2021, 23, 101574.
19 Wang L, Skjevrak G, Hustad J E, et al. Fuel Processing Technology, 2012, 96, 88.
20 Sun Y Q, Chen J J, Zhang Z T. Applied Energy, 2019, 233, 412.
21 Mejdi M, Saillio M, Chaussadent T, et al. Cement and Concrete Research, 2020, 135, 106155.
22 Wu W, Zhou Z, Yang J Z, et al. Water Research, 2019, 160, 167.
23 Singh S, Kumar V, Dhanjal D S, et al. Journal of Cleaner Production, 2020, 269, 122259.
24 Song X D, Xue X Y, Chen D Z, et al. Chemosphere, 2014, 109, 213.
25 Grutzmacher P, Puga A P, Bibar M P S, et al. Science of the Total Environment, 2018, 625, 1459.
26 Gao L Y, Deng J H, Huang G F, et al. Bioresource Technology, 2019, 272, 114.
27 Regkouzas P, Diamadopoulos E. Chemosphere, 2019, 224, 840.
28 Ma Y F, Li M, Li P, et al. Bioresource Technology, 2021, 319, 124199.
29 Das P, Khan S, AbdulQuadir M, et al. Science of the Total Environment, 2020, 715, 136775.
30 Pappas G S, Liatsi P, Kartsonakis I A, et al. Journal of Non-Crystalline Solids, 2008, 354, 755.
31 Boey P L, Maniam G P, Hamid S A, et al. Fuel, 2011, 90, 2353.
32 Ning Y L, Niu S L, Zhao S, et al. Chemistryselect, 2019, 4, 9849.
33 Seffati K, Esmaeili H, Honarvar B, et al. Renewable Energy, 2020, 147, 25.
34 Bazargan A, Kostic M D, Stamenkovic O S, et al. Fuel, 2015, 150, 519.
35 Lee J, Jung J M, Oh J I, et al. Bioresource Technology, 2017, 231, 59.
36 Xiong X N, Yu I K M, Cao L C, et al. Bioresource Technology, 2017, 246, 254.
37 Witoon T, Bumrungsalee S, Vathavanichkul P, et al. Bioresource Technology, 2014, 156, 329.
38 Vakros J. Catalysts, 2018, 8, 562.
39 Kouzu M, Hidaka J. Fuel, 2012, 93, 1.
40 Li C L, Ji W R, Ma B B, et al. Petroleum Processing and Petrochemicals, 2017, 48(4), 73(in Chinese).
李传亮, 计伟荣, 马兵兵, 等. 石油炼制与化工, 2017, 48(4), 73.
41 Shu Q, Yuan H, Liu B, et al. Fuel, 2015, 143, 547.
42 Wang S X, Shan R, Wang Y Z, et al. Renewable Energy, 2019, 130, 41.
43 Albuquerque M C G, Jimenez-Urbistondo I, Santamaria-Gonzalez J, et al. Applied Catalysis A:General, 2008, 334, 35.
44 Pasupulety N, Gunda K, Liu Y Q, et al. Applied Catalysis A:General, 2013, 452, 189.
45 Justine M, Prabu H J, Johnson I, et al. Materials Today:Proceedings, 2021, 36, 440.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[2] 范文琦, 潘登, 黄亮, 王强. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102.
[3] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[4] 王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 765-771.
[5] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[6] 王晴, 李天如, 张强, 丁兆洋. 基于灰色关联与二分法的无机矿物聚合物强度特性研究*[J]. 《材料导报》期刊社, 2017, 31(23): 182-186.
[7] 许乃才, 史丹丹, 党力, 洪天增, 董亚萍, 刘忠, 李武. CaO-Al2O3二元氧化物吸附剂的制备、表征及除氟性能研究*[J]. 《材料导报》期刊社, 2017, 31(16): 36-40.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed