Research Progress on the Design and Fabrication of Discontinuously Reinforced Heat-resistant Titanium Matrix Composites
TUO Jinpeng1,2, CHEN Anqi3,*, YAO Fusheng4, XU Junjie2, LI Xiang3, DONG Longlong3, YANG Yi1,*
1 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China 2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China 3 Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, China 4 School of Materials and Chemistry, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
Abstract: With the development and application of novel high speed aircraft and high thrust ratio engines in the aerospace field, discontinuously reinforced heat-resistant titanium matrix composites (DRTMCs) have been focused extensively owing to its excellent properties such as lightweight, heat resistance, high strength, and superior processing and deformation performance. An effective method to improve the heat resistance of DRTMCs is to add multiple and multi-scale discontinuous reinforcements to titanium alloy matrix to control their formation of specific microstructural configurations. In this summary, the current research process of DRTMCs is reviewed from the aspects of titanium alloy matrix selection, methods of reinforcement phase regulation, manufacturing techniques of the composites and so on. Furthermore, in conjunction with advanced manufacturing technologies, future research prospects for this class of composites are presented.
脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
TUO Jinpeng, CHEN Anqi, YAO Fusheng, XU Junjie, LI Xiang, DONG Longlong, YANG Yi. Research Progress on the Design and Fabrication of Discontinuously Reinforced Heat-resistant Titanium Matrix Composites. Materials Reports, 2025, 39(8): 24040119-10.
1 Attar H, Ehtemam-Haghighi S, Kent D, et al. International Journal of Machine Tools and Manufacture, 2018, 133, 85. 2 Hayat M D, Singh H, He Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 418. 3 Wang Z, Tan Y N, Li N. Journal of Alloys and Compounds, 2023, 965, 171030. 4 Zheng B W, Dong F Y, Yuan X G, et al. Tribology International, 2020, 145, 106177. 5 Lyu W J, Zhang D, Han Y F, et al. Aeronautical Manufacturing Technology, 2023, 66(4), 38(in Chinese). 吕维洁, 张荻, 韩远飞, 等. 航空制造技术, 2023, 66(4), 38. 6 Han Y F, Le J W, Fang M H, et al. Materials China, 2020, 39(12), 945 (in Chinese). 韩远飞, 乐建温, 方旻翰, 等. 中国材料进展, 2020, 39(12), 945. 7 Yang H, Chen X H, Huang G S, et al. Journal of Magnesium and Alloys, 2022, 10(9), 2311. 8 Huang L J, Geng L, Peng H X. Materials China, 2019, 38(3), 214 (in Chinese). 黄陆军, 耿林, 彭华新. 中国材料进展, 2019, 38(3), 214. 9 Yao F S, Tuo J P, Chen A Q, et al. Copper Engineering, 2023(6), 21(in Chinese). 姚富升, 脱锦鹏, 陈安琦, 等. 铜业工程, 2023(6), 21. 10 Wang G P, Xu S N, Liu L et al. Copper Engineering, 2023(2), 61(in Chinese). 王国鹏, 胥珊娜, 刘乐, 等. 铜业工程, 2023(2), 61. 11 Sen I, Tamirisakandala S, Miracle D B, et al. Acta Materialia, 2007, 55(15), 4983. 12 Wang B, Huang L J, Geng L. Materials Science and Engineering: A, 2012, 558, 663. 13 Huang L J, Geng L, Peng H X, et al. Materials Science and Enginee-ring: A, 2012, 534, 688. 14 Huang L J, Geng L, Peng H X. Progress in Materials Science, 2015, 71, 93. 15 Ren J T, Li P Y, Xu J J. Copper Engineering, 2024(5), 122(in Chinese). 任嘉腾, 李鹏远, 徐俊杰. 铜业工程, 2024(5), 122. 16 Yang Z F. Microstructure and properties of multivariate reinforced titanium matrix composites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2007 (in Chinese). 杨志峰. 多元增强钛基复合材料的微结构及性能研究. 博士研究论文, 上海交通大学, 2007. 17 Li J X, Han Y F, Yang D Y, et al. Frontiers in Materials, 2019, 6, 276. 18 Qiu P K. Superplastic deformation behaviour and microstructure evolution mechanisms of articulate reinforced heat-resistant titanium matrix compo-sites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2021 (in Chinese). 邱培坤. 颗粒增强耐热钛基复合材料超塑性变形行为与组织演变机理. 博士研究论文, 上海交通大学, 2021. 19 Li S P, Wang X Y, Wei Z C, et al. Scripta Materialia, 2022, 218, 114835. 20 Liu T J. Microstructure and properties of (TiB+La2O3) reinforced heat-resistant titanium matrix composites. Master's Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese). 刘统军. (TiB+La2O3)增强耐热钛基复合材料的组织和性能研究. 硕士学位论文, 上海交通大学, 2015. 21 Zhang Y T. Study of microstructure and mechanical properties of TiBw/Ti60 composites prepared by SPS. Master's Thesis, Shanghai University of Engineering Science, China, 2021 (in Chinese). 张悦婷. SPS制备TiBw/Ti60复合材料显微组织和力学性能的研究. 硕士学位论文, 上海工程技术大学, 2021. 22 Cai C, He S, Li L F, et al. Composites Part B: Engineering, 2019, 164, 546. 23 Jiao Y, Huang L J, Wang S, et al. Journal of Alloys and Compounds, 2017, 704, 269. 24 Wu J. Thermal processing and organisational property evolution of dual-scale particle-reinforced titanium matrix composites. Ph. D. Thesis, Taiyuan University of Technology, China, 2019 (in Chinese). 吴介. 双尺度颗粒增强钛基复合材料热加工及组织性能演变规律研究. 博士学位论文, 太原理工大学, 2021. 25 Yang J H. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α-Ti composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 杨建辉. (TiB+TiC+Y2O3)/α-Ti复合材料变形行为及组织性能研究. 博士学位论文, 哈尔滨工业大学, 2020. 26 Chen B. Deformation and fracture behavior of TiBw/TA15 titanium matrix composite with network reinforcement architecture at elevated temperatures. Master's Thesis, Zhejiang University, China, 2020 (in Chinese). 陈斌. 网状增强TiBw/TA15钛基复合材料高温变形与断裂行为研究. 硕士学位论文, 浙江大学, 2020. 27 Huang F F. Microstructure and properties of in situ TiB reinforced high temperature titanium alloy matrix composites. Master's Thesis, Harbin Institute of Technology, China, 2014. (in Chinese). 黄菲菲. 原位TiB增强高温钛合金基复合材料的组织与性能研究. 硕士研究论文, 哈尔滨工业大学, 2014 28 Fan W D, Dong L L, Zheng F K, et al. Composites Communications, 2023, 42, 101697. 29 Dong L L, Zhang W, Fu Y Q, et al. Carbon, 2021, 184, 583. 30 Lu J W, Dong L L, Liu Y, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105971. 31 Qi J Q. Microstructure and high-temperature deformation behavior of TiC-reinforced high-temperature titanium alloy matrix composites prepared by melt-casting method. Ph. D. Thesis, Harbin Institute of Technology, China, 2013 (in Chinese). 戚继球. 熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为, 博士学位论文, 哈尔滨工业大学, 2013. 32 Huang L J, Wang S, Geng L, et al. Composites Science and Technology, 2013, 82, 23. 33 Huang L J, Geng L, Peng H X, et al. Scripta Materialia, 2011, 64(9), 844. 34 Huang L J, Yang F Y, Hu H T, et al. Materials & Design, 2013, 51, 421. 35 Li S P, Wang X Y, Le J W, et al. Composites Part B: Engineering, 2022, 245, 110169. 36 Zhong Z X, Zhang B, Ye J, et al. Materials Science and Engineering: A, 2024, 891, 145996. 37 Zhang B, Zhang F M, Saba F, et al. Journal of Alloys and Compounds, 2021, 859, 157777. 38 Jiao Y, Wang K H, Ceng X, et al. Materials Letters, 2023, 346, 134548. 39 Namini A S, Delbari S A, Nayebi B, et al. Materials Chemistry and Physics, 2020, 251, 123087. 40 Kuang W, Wang M M, Li J X, et al. Materials for Mechanical Engineering, 2015, 39(2), 67(in Chinese). 邝玮, 王敏敏, 李九霄, 等. 机械工程材料, 2015, 39(2), 67. 41 Geng K, Lu W J, Yang Z F, et al. Materials Letters, 2003, 57(24), 4054. 42 Lu W J, Xiao L, Xu D, et al. Journal of Alloys and Compounds, 2007, 433(1), 140. 43 Geng K, Lu W J, Zhang D, et al. Materials & Design, 2003, 24(6), 409. 44 Geng K, Lu W J, Qin Y X, et al. Materials Research Bulletin, 2004, 39(6), 873. 45 Hashin Z, Shtrikman S. Journal of Applied Physics, 2004, 33(10), 3125. 46 Huang L J, Geng L, Peng H X. Materials Science and Engineering: A, 2010, 527(24), 6723. 47 Huang L J, Geng L, Xu H Y, et al. Materials Science and Engineering: A, 2011, 528(6), 2859. 48 Han S W, Xu L J, Zheng Y F, et al. Materials Characterization, 2024, 210, 113785. 49 Zhang J Z, Zhang Y Z, Huang C, et al. Chinese Journal of Lasers, 2011, 38(3), 108(in Chinese). 孙景超, 张永忠, 黄灿, 等. 中国激光, 2011, 38(3), 108. 50 Li J X, Han Y F, Yang D Y, et al. Frontiers in Materials, 2019, 6, 276. 51 Zhong Z X, Zhang B, Ren Y H, et al. Materials Characterization, 2024, 207, 113499. 52 Dong L L, Li X, Sun G D, et al. Composites Communications, 2024, 45, 101787. 53 Wang J H. Casting, microstructure and properties of in situ autogenous titanium matrix composites. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese). 王冀恒. 原位自生钛基复合材料的铸造、组织和性能研究, 博士学位论文, 上海交通大学, 2015. 54 Lagos M A, Agote I, Atxaga G, et al. Materials Science and Enginee-ring: A, 2016, 655, 44. 55 Graziani G, Ghezzi D, Boi M, et al. Biomaterials Advances, 2024, 159, 213815. 56 Cao Y K, Liu Y, Li Y P, et al. Mechanics of Materials, 2020, 141, 103260. 57 Fang M H, Han Y F, Shi Z S, et al. Composites Part B: Engineering, 2021, 211, 108683. 58 Tang M K, Zhang L C, Zhang N. Materials Science and Engineering: A, 2021, 814, 141187. 59 Park J G, Keum D H, Lee Y H. Carbon, 2015, 95, 690. 60 Wang Y M, Zhu M, Dong L L, et al. Journal of Alloys and Compounds, 2023, 947, 169557. 61 Wang S, Huang L J, Zhang R, et al. Materials Characterization, 2022, 194, 112425. 62 Liu H Y, Li S F, Liu L, et al. Vacuum, 2023, 217, 112521. 63 Hang Y F, Wei K, Yang X F, et al. Rare Metal Materials and Engineering, 2016, 45(12), 3104. 64 Xiang J, Han Y F, Le J W, et al. Materials Characterization, 2018, 146, 149. 65 Huang G F, Wang J H, Wang Q, et al. Materials Science and Enginee-ring: A, 2021, 811, 140988. 66 Wu W Z, Li X C, Liu Q P, et al. Materials Today Advances, 2022, 16, 100319. 67 Tian X X, Zhao Z, Wang H B, et al. Journal of Alloys and Compounds, 2023, 960, 170687. 68 Nouri A, Rohani Shirvan A, Li Y C, et al. Journal of Materials Science & Technology, 2021, 94, 196. 69 Fujieda T, Cui Y J, Aoyagi K, et al. Materialia, 2018, 4, 367. 70 Li S L, Li S F, Liu H Y, et al. Materials Characterization, 2024, 215, 114132. 71 Zhao X, Lu X, Zuo H N, et al. Ceramics International, 2023, 49(17, Part B), 28920. 72 Guo S, Li Y N, Gu J R, et al. Journal of Materials Research and Technology, 2023, 23, 1934.