Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24060057-11    https://doi.org/10.11896/cldb.24060057
  金属与金属基复合材料 |
温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响
陈港明, 王辉*, 黄雪飞*
四川大学材料科学与工程学院,成都 610065
Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures
CHEN Gangming, WANG Hui*, HUANG Xuefei*
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 36785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 FeCrAl合金是一种极具潜力的耐事故燃料(ATF)包壳材料,但其目前的组织和性能还尚未能满足ATF包壳的需求,本工作研究了不同温轧变形量对低铬FeCrAl合金显微组织和室温、高温下力学性能的影响,试图通过优化温轧工艺来获得组织和性能更加优异的FeCrAl合金。结果表明,当温轧变形量较小时,可以有效地细化晶粒,并在基体中形成大量的亚晶,同时还会诱导Laves相的溶解。此时的强化机制主要是细晶强化和固溶强化。然而,当温轧变形量较大时,晶粒细化效果会减弱,但基体中会形成大量的Laves相。此时的强化机制主要是析出强化。此外,温轧在室温和高温下对FeCrAl合金的综合力学性能表现出显著的增强效果,特别是显著提高了高温下的塑性。同时还发现,10%温轧变形量的试样可以在室温和高温下获得最佳的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈港明
王辉
黄雪飞
关键词:  FeCrAl合金  低铬  温轧  Laves相  力学性能    
Abstract: The effects of different warm rolling (WR) reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated. The study revealed that when the WR reduction is small, it effectively refines the grains and forms a large number of subgrains in the matrix, while also inducing the dissolution of the Laves phase. This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening. Conversely, with larger WR reductions, the grain refinement effect diminishes, but a significant number of Laves phases form in the matrix, strengthening the alloys primarily through precipitation strengthening. WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures, with a signi-ficant enhancement in ductility at high temperatures. Notably, a 10% WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures.
Key words:  FeCrAl alloy    low-Cr    warm rolling    Laves phases    mechanical property
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52122103);中国核动力院-四川大学联合创新基金(SCU&NPIC-LHCX-32)
引用本文:    
陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
CHEN Gangming, WANG Hui, HUANG Xuefei. Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures. Materials Reports, 2025, 39(9): 24060057-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060057  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24060057
1 Sun Z, Edmondson P D, Yamamoto Y. Acta Materialia, 2018, 144, 716.
2 Jiang G, Xu D, Feng P, et al. Journal of Alloys and Compounds, 2021, 869, 159235.
3 Field K G, Snead M A, Yamamoto Y, et al. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications, ORNL/TM-2017/186, 2017, pp. 1.
4 Yamamoto Y, Pint B A, Terrani K A, et al. Journal of Nuclear Materials, 2015, 467, 703.
5 Liu R, Zhou W, Cai J. Nuclear Engineering and Design, 2018, 330, 106.
6 Yamamoto Y. Development and quality assessments of commercial heat production of ATF FeCrAl tubes, ORNL/TM-2015/478, 2015, pp. 1.
7 Huang X, Wang H, Qiu S, et al. Journal of Materials Processing Technology, 2020, 277, 116434.
8 Dossett J L. Practical Heat Treating: Basic Principles, ASM International, 2020.
9 Rebak R B. EPJ Nuclear Sciences & Technologies, 2017, 3, 34.
10 Wang H, Zhou X, He H, et al. Corrosion Science, 2022, 195, 109998.
11 Sun Z, Yamamoto Y, Chen X. Materials Science and Engineering: A, 2018, 734, 93.
12 Yamamoto Y, Yang Y, Field K G, et al. Letter report documenting progress of second generation atf fecral alloy fabrication. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2014.
13 Najafi H, Rassizadehghani J, Halvaaee A. Materials Science and Technology, 2007, 23(6), 699.
14 Qian Y, Sun R, Zhang W, et al. Acta Metallurgica Sinica, 2019, 56(3), 321.
15 Zhang G Y, Chu R, Zhang H, et al. Advanced Materials Research, 2014, 853, 192.
16 Xu H, Lu Z, Wang D, et al. Materials Science and Technology, 2017, 33(15), 1790.
17 Eklund J, Jönsson B, Persdotter A, et al. Corrosion Science, 2018, 144, 266.
18 Chen G, Wang H, Sun H, et al. Materials Science and Engineering: A, 2021, 803.
19 James W B. Powder Metallurgy Methods and Applications, in ASM hanbook, Powder Metallurgy, 2015, 7, 9.
20 Callister W D, Rethwisch D G, Blicblau A, et al. Materials science and engineering: an introduction, John wiley & sons New York, 2007.
21 Hull D, Bacon D J. Introduction to dislocations, Elsevier, Netherlands, 2011, pp. 172.
22 Mcmurray J W, Hu R, Ushakov S, et al. Journal of Nuclear Materials, 2017, 492, 128.
23 Shin D H, Kim I Y, Kim J, et al. Acta Materialia, 2001, 49, 1285.
24 Tang J, Chen L, Li Z, et al. Corrosion Science, 2021, 180, 109201.
25 Zhang Y, Sun H, Wang H, et al. Materials Science and Engineering: A, 2021, 826, 142003.
26 Sun Z, Bei H, Yamamoto Y. Materials Characterization, 2017, 132, 126.
27 Chen L, Wang H, An X, et al. Materials Characterization, 2022, 190, 112026.
28 Bhattacharjee P P, Zaid M, Sathiaraj G D, et al. Metallurgical and Materials Transactions A, 2014, 45, 2180.
29 Tikhonova M, Torganchuk V, Brasche F, et al. Metallurgical and Materials Transactions A, 2019, 50, 4245.
30 Zebarjadi Sar M, Barella S, Gruttadauria A, et al. Metals, 2018, 8(11), 927.
31 Diligent S, Gautier E, Lemoine X, et al. Acta materialia, 2001, 49(19), 4079.
32 Zimmels Y. Journal of Colloid and Interface Science, 1976, 57, 446.
33 Brailsford A D, Aaron H B. Journal of Applied Physics, 1969, 40, 1702.
34 Haessner F, Plaut R L, Padilha A F. ISIJ International, 2003, 43, 1472.
35 Hazra S S, Gazder A A, Pereloma E V. Materials Science and Enginee-ring: A, 2009, 524(1), 158.
36 Wusatowski Z. Fundamentals of rolling, Elsevier, Netherlands, 2013, pp. 200.
37 Purdy G R. Dislocation and grain boundary diffusion, Springer, Germany, 1990, pp. 309.
38 Bikmukhametov I, Beladi H, Wang J, et al. Acta Materialia, 2019, 170, 75.
39 Lomaev I L, Elsukov E P, Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1419.
40 Kirchheim R. Acta Materialia, 2007, 55, 5129.
41 Wang H, Guo B, An X, et al. Acta Metallurgica Sinica (English Letters), 2022, 35(12), 2101.
42 Levine L E, Narayan K L, Kelton K F. Journal of Materials Research, 1997, 12, 124.
43 Muramatsu M, Aoyagi Y, Tadano Y, et al. Computational Materials Science, 2014, 87, 112.
44 Li R, Fu B, Wang Y, et al. Materials (Basel), 2022, 15(19), 6914.
45 Nikulin I, Kipelova A Y, Malopheyev S, et al. Acta Materialia, 2012, 60, 487.
46 Sidor J J, Petrov R H, Kestens L A I. Acta Materialia, 2011, 59(14), 5735.
47 Heggen M, Houben L, Feuerbacher M. Nature Materials, 2010, 94, 332.
48 Queyreau S, Monnet G, Devincre B, Acta Materialia, 2010, 58, 5586.
49 Hansen N. Advanced Engineering Materials, 2005, 7, 815.
50 Cui B, Kacher J, McMurtrey M D, et al. Acta Materialia, 2014, 65, 150.
51 Eringen A C, Kim B S. Mechanics Research Communications, 1974, 1, 233.
52 Hwang J C M, Balluffi R W. Scripta Metallurgica, 1978, 12, 709.
53 Conrad H. JOM, 1964, 16, 582.
54 Guria A, Charit I. Annals of Nuclear Energy, 2017, 100, 82.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[6] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[7] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[8] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[9] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[10] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[11] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[12] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[13] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[14] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[15] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed