Abstract: The effects of different warm rolling (WR) reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated. The study revealed that when the WR reduction is small, it effectively refines the grains and forms a large number of subgrains in the matrix, while also inducing the dissolution of the Laves phase. This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening. Conversely, with larger WR reductions, the grain refinement effect diminishes, but a significant number of Laves phases form in the matrix, strengthening the alloys primarily through precipitation strengthening. WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures, with a signi-ficant enhancement in ductility at high temperatures. Notably, a 10% WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures.
陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
CHEN Gangming, WANG Hui, HUANG Xuefei. Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures. Materials Reports, 2025, 39(9): 24060057-11.
1 Sun Z, Edmondson P D, Yamamoto Y. Acta Materialia, 2018, 144, 716. 2 Jiang G, Xu D, Feng P, et al. Journal of Alloys and Compounds, 2021, 869, 159235. 3 Field K G, Snead M A, Yamamoto Y, et al. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications, ORNL/TM-2017/186, 2017, pp. 1. 4 Yamamoto Y, Pint B A, Terrani K A, et al. Journal of Nuclear Materials, 2015, 467, 703. 5 Liu R, Zhou W, Cai J. Nuclear Engineering and Design, 2018, 330, 106. 6 Yamamoto Y. Development and quality assessments of commercial heat production of ATF FeCrAl tubes, ORNL/TM-2015/478, 2015, pp. 1. 7 Huang X, Wang H, Qiu S, et al. Journal of Materials Processing Technology, 2020, 277, 116434. 8 Dossett J L. Practical Heat Treating: Basic Principles, ASM International, 2020. 9 Rebak R B. EPJ Nuclear Sciences & Technologies, 2017, 3, 34. 10 Wang H, Zhou X, He H, et al. Corrosion Science, 2022, 195, 109998. 11 Sun Z, Yamamoto Y, Chen X. Materials Science and Engineering: A, 2018, 734, 93. 12 Yamamoto Y, Yang Y, Field K G, et al. Letter report documenting progress of second generation atf fecral alloy fabrication. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2014. 13 Najafi H, Rassizadehghani J, Halvaaee A. Materials Science and Technology, 2007, 23(6), 699. 14 Qian Y, Sun R, Zhang W, et al. Acta Metallurgica Sinica, 2019, 56(3), 321. 15 Zhang G Y, Chu R, Zhang H, et al. Advanced Materials Research, 2014, 853, 192. 16 Xu H, Lu Z, Wang D, et al. Materials Science and Technology, 2017, 33(15), 1790. 17 Eklund J, Jönsson B, Persdotter A, et al. Corrosion Science, 2018, 144, 266. 18 Chen G, Wang H, Sun H, et al. Materials Science and Engineering: A, 2021, 803. 19 James W B. Powder Metallurgy Methods and Applications, in ASM hanbook, Powder Metallurgy, 2015, 7, 9. 20 Callister W D, Rethwisch D G, Blicblau A, et al. Materials science and engineering: an introduction, John wiley & sons New York, 2007. 21 Hull D, Bacon D J. Introduction to dislocations, Elsevier, Netherlands, 2011, pp. 172. 22 Mcmurray J W, Hu R, Ushakov S, et al. Journal of Nuclear Materials, 2017, 492, 128. 23 Shin D H, Kim I Y, Kim J, et al. Acta Materialia, 2001, 49, 1285. 24 Tang J, Chen L, Li Z, et al. Corrosion Science, 2021, 180, 109201. 25 Zhang Y, Sun H, Wang H, et al. Materials Science and Engineering: A, 2021, 826, 142003. 26 Sun Z, Bei H, Yamamoto Y. Materials Characterization, 2017, 132, 126. 27 Chen L, Wang H, An X, et al. Materials Characterization, 2022, 190, 112026. 28 Bhattacharjee P P, Zaid M, Sathiaraj G D, et al. Metallurgical and Materials Transactions A, 2014, 45, 2180. 29 Tikhonova M, Torganchuk V, Brasche F, et al. Metallurgical and Materials Transactions A, 2019, 50, 4245. 30 Zebarjadi Sar M, Barella S, Gruttadauria A, et al. Metals, 2018, 8(11), 927. 31 Diligent S, Gautier E, Lemoine X, et al. Acta materialia, 2001, 49(19), 4079. 32 Zimmels Y. Journal of Colloid and Interface Science, 1976, 57, 446. 33 Brailsford A D, Aaron H B. Journal of Applied Physics, 1969, 40, 1702. 34 Haessner F, Plaut R L, Padilha A F. ISIJ International, 2003, 43, 1472. 35 Hazra S S, Gazder A A, Pereloma E V. Materials Science and Enginee-ring: A, 2009, 524(1), 158. 36 Wusatowski Z. Fundamentals of rolling, Elsevier, Netherlands, 2013, pp. 200. 37 Purdy G R. Dislocation and grain boundary diffusion, Springer, Germany, 1990, pp. 309. 38 Bikmukhametov I, Beladi H, Wang J, et al. Acta Materialia, 2019, 170, 75. 39 Lomaev I L, Elsukov E P, Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1419. 40 Kirchheim R. Acta Materialia, 2007, 55, 5129. 41 Wang H, Guo B, An X, et al. Acta Metallurgica Sinica (English Letters), 2022, 35(12), 2101. 42 Levine L E, Narayan K L, Kelton K F. Journal of Materials Research, 1997, 12, 124. 43 Muramatsu M, Aoyagi Y, Tadano Y, et al. Computational Materials Science, 2014, 87, 112. 44 Li R, Fu B, Wang Y, et al. Materials (Basel), 2022, 15(19), 6914. 45 Nikulin I, Kipelova A Y, Malopheyev S, et al. Acta Materialia, 2012, 60, 487. 46 Sidor J J, Petrov R H, Kestens L A I. Acta Materialia, 2011, 59(14), 5735. 47 Heggen M, Houben L, Feuerbacher M. Nature Materials, 2010, 94, 332. 48 Queyreau S, Monnet G, Devincre B, Acta Materialia, 2010, 58, 5586. 49 Hansen N. Advanced Engineering Materials, 2005, 7, 815. 50 Cui B, Kacher J, McMurtrey M D, et al. Acta Materialia, 2014, 65, 150. 51 Eringen A C, Kim B S. Mechanics Research Communications, 1974, 1, 233. 52 Hwang J C M, Balluffi R W. Scripta Metallurgica, 1978, 12, 709. 53 Conrad H. JOM, 1964, 16, 582. 54 Guria A, Charit I. Annals of Nuclear Energy, 2017, 100, 82.