Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24070074-9    https://doi.org/10.11896/cldb.24070074
  无机非金属及其复合材料 |
一维陶瓷相增强的含碳耐火材料研究进展
张红1, 鄢文2,*, 李楠2, 张会1, 陈哲2, 李维泰1
1 西安建筑科技大学华清学院,西安 710043
2 武汉科技大学先进耐火材料全国重点实验室,武汉 430081
Research Progress of One-dimensional Ceramic Reinforced Carbon-containing Refractories
ZHANG Hong1, YAN Wen2,*, LI Nan2, ZHANG Hui1, CHEN Zhe2, LI Weitai1
1 Xi'an University of Architecture and Technology Huaqing College, Xi'an 710043, China
2 The State Key Laboratory of Advanced Refractory Materials, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 25605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含碳耐火材料是钢铁冶炼过程中一种重要的功能耐火材料,其良好的热震稳定性和抗渣侵蚀性显著延长了材料的使用寿命。但含碳耐火材料在高温下易被氧化,从而导致其力学性能和高温服役性能变差,这是其应用受限的主要原因。通过对含碳耐火材料进行一维陶瓷相增强可显著提高其力学性能和高温服役性能,已成为当前含碳耐火材料的研究热点之一。本文以含碳耐火材料为研究对象,详细梳理了分布于基质(碳纤维、碳纳米管、碳化硅晶须、莫来石晶须)和分布于轻骨料-基质界面(轻骨料-碳化硅晶须和轻骨料-尖晶石)两种方式来制备一维陶瓷相增强的含碳耐火材料的相关研究成果,介绍和分析了两种策略下一维陶瓷相增强的含碳耐火材料的力学性能和高温服役性能的研究进展,总结了其制备过程中存在的问题,并展望了含碳耐火材料的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红
鄢文
李楠
张会
陈哲
李维泰
关键词:  含碳耐火材料  一维陶瓷相  基质  骨料-基质界面  性能优化    
Abstract: Carbon-containing refractory is a kind of crucial functional refractory in the process of iron and steel smelting. Its excellent thermal shock stability and slag erosion resistance can significantly improve the service life of the material. However, the mechanical properties and high temperature service performances of carbon-containing refractory become worse due to the fact that the carbon-containing refractories are easy to be oxidized at high temperature, which is the main reason for their limited application. The enhancement of one-dimensional ceramic phase in carbon-containing refractories can remarkably increase their mechanical properties and high temperature service performances, which has become one of the research hotspots of carbon-containing refractories. Herein, the present review takes the carbon-containing refractory as the research object, and detailly discusses the preparation of one-dimensional ceramic reinforced carbon-containing refractories by optimizing the matrix (carbon fiber, carbon nanotubes, SiC whisker, mullite whisker) and regulating the microporous aggregate-matrix interface (microporous aggregate-SiC whisker and microporous aggregate-spinel). The mechanical properties and high temperature service performances of one-dimensional ceramic reinforced carbon-containing refractories under two strategies are introduced, and the problems in the preparation process are also summarized. Meanwhile, the future research direction of carbon-containing refractories is prospected.
Key words:  carbon-containing refractory    one-dimensional ceramic phase    matrix    aggregate-matrix interface    performance optimization
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TQ175.14  
基金资助: 国家自然科学基金(U21A2058);湖北省科技计划项目(2024CSA075);国家级大学生创新训练计划项目(202413679002);陕西省教育厅科研计划项目(23JK0522)
通讯作者:  *鄢文,博士,武汉科技大学材料学部三级教授、博士研究生导师。目前主要从事耐火材料、熔融金属过滤器等方面的研究工作。yanwen@wust.edu.cn   
作者简介:  张红,硕士。现为西安建筑科技大学华清学院专职教师,目前主要研究领域为含碳耐火材料性能增强以及轻量化。
引用本文:    
张红, 鄢文, 李楠, 张会, 陈哲, 李维泰. 一维陶瓷相增强的含碳耐火材料研究进展[J]. 材料导报, 2025, 39(9): 24070074-9.
ZHANG Hong, YAN Wen, LI Nan, ZHANG Hui, CHEN Zhe, LI Weitai. Research Progress of One-dimensional Ceramic Reinforced Carbon-containing Refractories. Materials Reports, 2025, 39(9): 24070074-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070074  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24070074
1 Pilli V, Sarkar R. Ceramics International, 2020, 46(8), 12812.
2 Wei Y W, Dong Y J, Zhang T, et al. Journal of Iron and Steel Research International, 2020, 27, 55.
3 Chen Y Q, Liu G Q, Hou X J, et al. Ceramics International, 2017, 43(17), 14599.
4 Zheng X, Xiao G Q, Li Y J, et al. International Journal of Applied Ceramic Technology, 2024, 21(5), 3554.
5 Cheng Y, Zhu T B, Li Y W, et al. Ceramics International, 2020, 46(16), 25603.
6 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2019, 781, 149.
7 Wang Q H, Li Y W, Luo M, et al. Ceramics International, 2014, 40(1), 163.
8 Venkatesh Pilli, Ritwik Sarkar. Ceramic International, 2020, 46(8), 12812.
9 Fan H B, Li Y W, Sang S B. Materials Science and Engineering:A, 2011, 528(7), 3177.
10 Wei G P, Zhu B Q, Li X C, et al. Ceramics International, 2015, 41(1), 1553.
11 Darban S, Kakroudi M G, Vandchali M B, et al. Ceramics International, 2020, 46(13), 20954.
12 Zhu T B, Li Y W, Sang S B, et al. Jourmal of Ceramic Science and Technology , 2016, 7(1), 127.
13 Wang E H, Chen J H, Hou X M. Chinese Journal of Engineering, 2019, 41(12), 1520.
14 Fu L P, Gu H Z, Huang A, et al. Ceramics International, 2015, 41(1), 1263.
15 Chen Z, Yan W, Schafföner S, et al. Journal of the American Ceramic Society, 2020, 103(8), 4713.
16 Wang Y L, Wang Z F, Wang X T, et al. Materials Reports, 2023, 37(1), 67(in Chinese).
王玉龙, 王周福, 王玺堂, 等. 材料导报, 2023, 37(1), 67.
17 Dai L M, Xiao G Q, Ding D H. Materials Reports, 2021, 35(3), 3057(in Chinese).
代黎明, 肖国庆, 丁冬海. 材料导报, 2021, 35(3), 3057.
18 Deng X. In-situ formation of β-Sialon ceramic bonding phases and their effect on Al2O3-C refractory properties. Master’s Thesis, Wuhan University of Science and Technology, China, 2016 (in Chinese).
邓兴. 原位生成β- Sialon陶瓷结合相及其对Al2O3-C耐火材料性能的影响. 硕士学位论文, 武汉科技大学, 2016.
19 Bitencourt C S, Luz A P, Pagliosa C, et al. Ceramics International, 2015, 41(10), 13320.
20 White J D E, Simpson A H, Shteinberg A S, et al. Journal of Materials Research, 2008, 23(1), 160.
21 Song N, Zhang H B, Liu H, et al. Ceramics International, 2017, 43(9), 6786.
22 Shiogai T, Sashida N, Odano N, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42(4), 458.
23 Luo M, Li Y W, Jin S L, et al. Materials Science and Engineering:A, 2012, 548, 134.
24 Feng C Z, Xiao G Q, Ding D H, et al. Journal of the American Ceramic Society, 2024, 107(6), 3881.
25 Lu D C, Cheng S, Zhang L W, et al. Ceramics International, 2023, 49(7), 10673.
26 Zhu L L, Li S, Gao Z X, et al. Journal of the Australian Ceramic Society, 2023, 59(1), 259.
27 Zhang H, Li L, Yan W, et al. Contemporary Chemical Industry, 2022, 51(7), 1527(in Chinese).
张红, 李楠, 鄢文, 等. 当代化工, 2022, 51(7), 1527.
28 Zhang H, Li L, Yan W, et al. Refractories, 2014, 48(2), 106(in Chinese).
张红, 李楠, 鄢文. 耐火材料, 2014, 48(2), 106.
29 Wang Y L, Wang Z F, Wang X T, et al. Journal of the Chinese Ceramic Society, 2024, 52(6), 2107(in Chinese).
王玉龙, 王周福, 王玺堂, 等. 硅酸盐学报, 2024, 52(6), 2107.
30 Zhang Y, Li Y W, Liao L, et al. Journal of the Chinese Ceramic Society, 2023, 51(3), 579(in Chinese).
章阳, 李亚伟, 廖宁, 等. 硅酸盐学报, 2023, 51(3), 579.
31 Lu J P. Physical Review Letters, 1997, 79(7), 1297.
32 Liang F, Li N, Liu B K, et al. New Carbon Materials, 2014, 29(2), 118(in Chinese).
梁峰, 李楠, 刘百宽, 等. 新型炭材料, 2014, 29(2), 118.
33 Liang F, Li N, Liu B K, et al. Carbon, 2014, 76, 472.
34 Liao N, Li Y W, Jin S L, et al. Materials Science and Engineering:A, 2017, 698, 80.
35 Liao N, Li Y W, Wang Q H, et al. Ceramics International, 2017, 43(16), 14380.
36 Li G D, Ding D H, Xiao G Q, et al. Ceramics International, 2022, 48(8), 10601.
37 Luo M, Li Y W, Jin S L, et al. Ceramics International, 2013, 39(5), 4831.
38 Luo M, Li Y W, Jin S L, et al. Materials Reports, 2010, 24(15), 155 (in Chinese).
罗明, 李亚伟, 金胜利, 等. 材料导报, 2010, 24(15), 155.
39 Long L Y, Zhu J, Zhang D X, et al. Journal of Functional Materials, 2023, 54(11), 11091(in Chinese).
龙凌吟, 朱俊, 张丹暇, 等. 功能材料, 2023, 54(11), 11091.
40 Chong X C, Luo J Y, Ding D H, et al. Journal of the American Ceramic Society, 2023, 106(11), 6891.
41 Chen Y, Ding J, Deng C J, et al. Ceramics International, 2023, 49(16), 26871.
42 Chen Y, Ding J, Yu C, et al. Journal of Physics and Chemistry of Solids, 2023, 177, 111304.
43 Li T Q, Chen J F, Xiao J L, et al. Journal of the American Ceramic Society, 2021, 104(5), 2366.
44 Qi X, Zhang L, Luo X D, et al. Ceramics International, 2023, 49(10), 15122.
45 Wang H F, Bi Y B, Zhou N S, et al. Ceramics International, 2016, 42(1), 727.
46 Jiang Q Z, Peng Y F, Han B Q, et al. Ceramics International, 2023, 49(24), 39815.
47 Harmuth H. Advances in Science and Technology, 2011, 70, 30.
48 Li W H, Zhen Q, Li R, et al. Ceramics International, 2024, 50(5), 7682.
49 Liu Z L, Deng C J, Yu C, et al. Ceramics International, 2018, 44(12), 13944.
50 Li Y G, Wang J K, Duan H J, et al. Ceramics International, 2022, 48(4), 5546.
51 Zhong W Q. China Ceramics, 2022, 58(12), 44(in Chinese).
钟伟强. 中国陶瓷, 2022, 58(12), 44.
52 Luo Y X, Wang X, Liu Z L, et al. Journal of Alloys and Compounds, 2024, 975, 172937.
53 Lian J W, Zhu B Q, Li X C, et al. Ceramics International, 2017, 43(15), 12427
54 Lian J W, Zhu B Q, Li X C, et al. Ceramics International, 2016, 42(14), 16266.
55 Meng B, Peng J H. Ceramics International, 2013, 39(2), 1525.
56 Ju M Q, Cai M F, Nie J H, et al. Ceramics International, 2021, 47(20), 29525.
57 Cao L Y, Liu J T, Huang J F, et al. Ceramics International, 2017, 43(18), 16512.
58 Zhou L, Huang J F, Ouyang H B, et al. Journal of Alloys and Compounds, 2017, 712, 288.
59 Chen H, Zhao L, He X, et al. Materials & Design, 2015, 85, 574.
60 Yan W, Chen J, Li N, et al. Ceramics International, 2015, 41(1), 515.
61 Lin X L, Yan W, Li N. Science of Sintering, 2016, 48(2), 147.
62 Li N. Peng C H, Yan W, et al. In:Unified International Technical Conference on Refractories. Kyoto, Japan, 2011.
63 Wu G Y, Yan W, Schafföner S, et al. Journal of Alloys and Compounds, 2019, 796, 131.
64 Yan W, Wu G Y, Ma S B, et al. Journal of the European Ceramic Society, 2018, 38(12), 4276.
65 Wang H, Li Y W, Zhu T B, et al. Ceramics International, 2014, 40(7), 11139.
66 Wang Q H, Li Y W, Sang S B, et al. Journal of alloys and compounds, 2015, 645, 388.
67 Fan H B, Li Y W, Sang S B. Materials Science and Engineering:A, 2011, 528(7-8), 3177.
68 Liao N, Li Y W, Wang Q H, et al. Ceramics International, 2017, 43(16), 14380.
69 Chen Z, Yan W, Schafföner S, et al. Journal of Alloys and Compounds, 2021, 862, 158036.
70 Wang C W, Yan W, Yan J J, et al. Journal of Asian Ceramic Societies, 2023, 11(2), 260.
71 Yan J J, Yan W, Dai Y J, et al. International Journal of Applied Ceramic Technology, 2023, 20(6), 3647.
72 Yin H F, Dang L J, Xin Y L, et al. Journal of Functional Materials A, 2018, 32(8), 2618(in Chinese).
尹洪峰, 党灵娟, 辛亚楼, 等. 功能材料A, 2018, 32(8), 2618.
73 Zielke H, Wetzig T, Himcinschi C, et al. Carbon, 2020, 159, 324.
74 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2018, 735, 1730.
75 Wang H, Li Y, Zhu T B, et al. Ceramics International, 2014, 40(7), 11139.
76 Chen Z, Yan W, Schafföner S, et al. Applied Ceramic Technology, 2022, 19(3), 1613.
77 Merchan-Merchan W, Saveliev A V, Kennedy L, et al. Progress in Energy and Combustion Science, 2010, 36(6), 696.
78 Qi X, Luo X, Zhang L. Ceramics International, 2023, 49(22), 35623.
79 Han Z, Yan W, Yan J, et al. Journal of the European Ceramic Society, 2023, 43(12), 5398.
80 Liu Y, Yan W, Chen Z, et al. International Journal of Applied Ceramic Technology, 2023, 20(4), 2289.
81 Wu Z H, Ding D H. Refractory material technology, Metallurgical Industry Press, China, 2017, pp. 145(in Chinese).
武志红, 丁东海. 耐火材料工艺学, 冶金工业出版社, 2017, pp. 145.
82 Tripathi H S, Ghosh A. Ceramics International, 2010, 36(4), 1189.
83 Zhang Y X, Li H X, Yang W G, et al. Journal of Functional Materials B, 2018, 32(4), 1352 (in Chinese).
张彦翔, 李红霞, 杨文刚, 等. 功能材料B, 2018, 32(4), 1352.
84 Guo Z Q, Ma Y, Rainer N, et al. China’s Refractories, 2019, 28(1), 1.
85 Chen Q L, Li T Q, Gao J, et al. Ceramics International, 2023, 49(11), 17818.
86 Luo J Y, Jin S L, Chong X C, et al. Journal of the European Ceramic Society, 2024, 44(4), 2620.
87 Chen Q L, Li Y W, Zhu T B, et al. Ceramics International, 2022, 48(2), 2500.
88 Zhu T B, Li Y W, Sang S B, et al. Journal of the European Ceramic Society, 2014, 34(16), 4425.
89 Yan W, Wu G Y, Ma S B, et al. Journal of the European Ceramic Society, 2018, 38(12), 4276.
90 Guo W J, Zhu T B, Zhao X, et al. Journal of the European Ceramic Society, 2024, 44(1), 496.
91 Xie Z H, Ye F B. Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(6), 896.
92 Luo J Y, Ding D H, Xiao G Q. Ceramics International, 2024, 50(8), 13550.
93 Yin H, Gao K, Wan Q F, et al. Ceramics International, 2021, 47(15), 21310.
94 Fu L P, Huang A, Lian P F, et al. Corrosion Science, 2017, 120, 211.
[1] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[2] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[3] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[4] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[5] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[6] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[7] 郑欣, 但卫华, 陈一宁, 李正军, 但晔, 胡晓兵. 生物源性补片研究现状及应用[J]. 材料导报, 2022, 36(20): 20100251-8.
[8] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[9] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[10] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[11] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[12] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[13] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[14] 杨慧, 童莉葛, 尹少武, 王立, 汉京晓, 唐志伟, 丁玉龙. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
[15] 陈一宁, 但卫华, 但年华. 脱细胞真皮基质的改性及应用概述[J]. 《材料导报》期刊社, 2018, 32(13): 2311-2319.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed