Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21080091-7    https://doi.org/10.11896/cldb.21080091
  高分子与聚合物基复合材料 |
地聚物在重金属铅固化中的研究进展
孙滢斐1,2,3, 张攀1, 胡敬平1, 杨家宽1, 侯慧杰1,*
1 华中科技大学环境科学与工程学院,武汉 430074
2 清华-伯克利深圳学院,广东 深圳 518055
3 清华大学深圳国际研究生院,广东 深圳 518055
Research Progress of Using Geopolymers to Solidify Lead Element from Lead-containing Pollutants
SUN Yingfei1,2,3, ZHANG Pan1, HU Jingping1, YANG Jiakuan1, HOU Huijie1,*
1 School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, China
3 Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 3591KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物作为一种新型的硅铝酸盐无机聚合胶凝材料,因具有耐酸、耐热、耐腐蚀和低能耗、低排放等优良性能而受到多领域的广泛关注,其中地聚物对重金属的固化作用成为重金属污染处理的新兴研究方向。在众多重金属中,地聚物对铅污染物的固化效果优异,引起学者的广泛关注。文章首先回顾了重金属污染的处理方法,提出了水泥基材料固化重金属铅存在的问题。其次,文章从地聚物对铅的固化机制及改性地聚物对铅的固化等方面,重点阐述了地聚物通过物理包封、电荷平衡作用、形成氧化物和/或硅酸盐等方式对铅的固化机理,并对影响地聚物固化铅的因素和地聚物固化铅性能表征方法进行了总结。最后,文章对地聚物在重金属铅固化方面的问题和展望进行了概述,为地聚物在铅固化中的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙滢斐
张攀
胡敬平
杨家宽
侯慧杰
关键词:  地聚物    重金属固化  硅铝酸盐  基质改性    
Abstract: As a novel type of aluminosilicate inorganic polymeric cementitious material, geopolymer has been widely utilized in many fields due to its excellent properties of acid resistance, heat resistance, corrosion resistance, low energy consumption and low emission. Emerging research field for heavy metal pollution control involves the solidification of heavy metals with geopolymers. The curing effect of geopolymer on lead conta-minants has attracted much attention due to its superior curing effect on lead compared to many other heavy metals. First, the paper reviewed strategies of heavy metal pollution control and addressed the limits of cement-based materials with regard to lead immobilization. Second, we thoroughly elaborated the mechanism of lead solidification and the immobilization of modified geopolymer to lead. Third, we covered the principal ways for lead solidification in geopolymer, such as physical encapsulation, charge balancing, and oxides and/or silicate formation. Moreover, we summarized factors affecting the solidification of lead by geopolymer and the characterization methods. Finally, we described the challenges and prospects of geopolymer for lead solidification and provided references for the study of geopolymers in lead solidification.
Key words:  geopolymer    lead    heavy metal solidification    aluminosillicate    matrix modification
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB321  
基金资助: 国家重点研发计划(2018YFC1900105)
通讯作者:  * 侯慧杰,华中科技大学教授、博士研究生导师,2003年7月于浙江大学光电信息工程学系获得工学学士学位;2006年3月于浙江大学光电信息工程学系获得工学硕士学位;2011年12月于美国德州农工大学电子及计算机工程学系获得工学博士学位。主要研究领域为固废处理处置及资源化、环境电化学在水环境污染治理及环境传感等。作为第一作者或通信作者发表论文42篇,主持国家自然科学基金面上项目2项、青年项目1项,湖北省自然科学基金项目1项,作为项目骨干成员参与国家重点研发计划。houhuijie@hust.edu.cn   
作者简介:  孙滢斐,2018年6月于青岛理工大学获得环境工程工学学士学位;2020年6月于华中科技大学获得环境工程工学硕士学位。现为清华-伯克利深圳学院、清华大学深圳国际研究生院博士研究生,在侯慧杰教授的指导下进行研究,主要研究领域为地聚物对重金属铅的固化。
引用本文:    
孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
SUN Yingfei, ZHANG Pan, HU Jingping, YANG Jiakuan, HOU Huijie. Research Progress of Using Geopolymers to Solidify Lead Element from Lead-containing Pollutants. Materials Reports, 2023, 37(7): 21080091-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080091  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21080091
1 Wang Y G, Han F L, Mu J Q. Construction and Building Materials, 2018, 160, 818.
2 Nikolić V, Komljenović M, Marjanović N, et al. Ceramics International, 2014, 40, 8479.
3 Ji Z H, Pei Y S. Journal of Environmental Management, 2019, 231, 256.
4 Guo B, Liu B, Yang J, et al. Journal of Environmental Management, 2017, 193, 410.
5 Thapa V B, Waldmann D. Contribution to collective works, University of Luxembourg, Germany, 2018, pp. 576.
6 Skvara F. Ceramics, 2007, 51, 173.
7 Davidovits J. 2018, Technical Paper #25, Geopolymer Institute Library, www. geopolymer. org. DOI:10. 13140/RG. 2. 2. 34337. 25441.
8 Luo Z T, Liu L, Kang S J, et al. Materials Reports, 2018, 32(11), 81 (in Chinese).
罗忠涛, 刘垒, 康少杰, 等. 材料导报, 2018, 32(11), 81.
9 Wang C X, Wu W T, Zheng L, et al. Modern Chemical Industry, 2021, 41(3), 63 (in Chinese).
王晨希, 吴文瞳, 郑蕾, 等. 现代化工, 2021, 41(3), 63.
10 Ji Z H, Pei Y S. Journal of Hazardous Materials, 2020, 384, 121290.
11 Nurliyana A, Mohd M A B A, Mohd R R M A Z, et al. In:Engineering Technology International Conference. Ho Chi Minh City, Vietnam, 2016, pp.97.
12 Al-Zboon K, Al-Harahsheh M S, Hani F B. Journal of Hazardous Mate-rials, 2011, 188, 414.
13 Chen X, Guo Y G, Ding S, et al. Journal of Cleaner Production, 2019, 207, 789.
14 Huang X, Huang T, Li S, et al. Ceramics International, 2016, 42, 9538.
15 El-Eswed B I, Aldagag O M, Khalili F I. Applied Clay Science, 2017, 140, 148.
16 Guo B. Fabrication of glass-ceramic and geopolymer using lead-zinc smelting slags and the immobilization mechanisms of Pb and Cd. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
郭斌. 铅锌冶炼渣制备微晶玻璃和地质聚合物及其铅镉固化机理. 博士学位论文, 北京科技大学, 2018.
17 Njimou J R, Pengou M, Tchakoute H K, et al. Journal of Chemical Technology & Biotechnology, 2021, 96, 1358.
18 Zheng J R, Liu L N. Bulletin of the Chinese Ceramic Society, 2009, 28(3), 435 (in Chinese).
郑娟荣, 刘丽娜. 硅酸盐通报, 2009, 28(3), 435.
19 Guo B, Pan D A, Liu B, et al. Construction and Building Materials, 2017, 134, 123.
20 Zhang J G, Provis J L, Feng D W, et al. Journal of Hazardous Materials, 2008, 157, 587.
21 van Jaarsveld J G S, van Deventer J S J, Lorenzen L. Metallurgical and Materials Transactions B, 1998, 29, 283.
22 Perera D S, Aly Z, Vance E R, et al. Journal of the American Ceramic Society, 2010, 88, 2586.
23 Qiu X M, Liu Y D, Yan C J, et al. Bulletin of the Chinese Ceramic Society, 2009, 38(7), 2281 (in Chinese).
仇秀梅, 刘亚东, 严春杰, 等. 硅酸盐通报, 2009, 38(7), 2281.
24 Liu Z, Li L, Zhang Y, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(4), 1382 (in Chinese).
刘泽, 李丽, 张媛, 等. 硅酸盐通报, 2018, 37(4), 1382.
25 Long W J, Ye T H, Xing F, et al. Cement and Concrete Composites, 2020, 114, 103803.
26 Nikolić V, Komljenović M, Džunuzović N, et al. Journal of Hazardous Materials, 2018, 350, 98.
27 Liu Y, Yan C J, Zhang Z H, et al. Fuel, 2016, 185, 181.
28 Zhang Y, Liu Z. In:1st Conference on Solid Waste Utilization and Eco-materials. Beijing, China, 2015 (in Chinese).
张媛, 刘泽. 中国硅酸盐学会固废分会成立大会第一届固废处理与生态环境材料学术交流会论文集. 北京, 2015.
29 Zheng L, Wang W, Shi Y C. Chemosphere, 2010, 79, 665.
30 Phair J W, van Deventer J S J, Smith J D. Applied Geochemistry, 2004, 19, 423.
31 Palomo A, Palacios M. Cement and Concrete Research, 2003, 33, 289.
32 Ji Z H, Su L Y, Pei Y S. Materials Chemistry and Physics, 2019, 242, 122535.
33 Koplík J, Kalina L, Másilko J, et al. Materials, 2016, 9, 533.
34 Lee S, van Riessen A, Chon C M, et al. Journal of Hazardous Materials, 2016, 305, 59.
35 Zheng L, Wang W, Gao X B. Waste Management, 2016, 58, 270.
36 Vu T H, Gowripalan N. Journal of Advanced Concrete Technology, 2018, 16, 124.
37 van Jaarsveld J G S, van Deventer J S J. Cement and Concrete Research, 1999, 29, 1189.
38 Li J L, Zhou S K, Rong L S, et al. Fine Chemicals, 2020, 37(7), 1343 (in Chinese).
李嘉丽, 周书葵, 荣丽杉, 等. 精细化工, 2020, 37(7), 1343.
39 Jin M T, Zhang Q, Lou M X, et al. Bulletin of the Chinese Ceramic Society, 2007(3), 467 (in Chinese).
金漫彤, 张琼, 楼敏晓, 等. 硅酸盐通报, 2007(3), 467.
40 Kränzlein E, Harmel J, Pöllmann H, et al. Construction and Building Materials, 2019, 227, 116634.
41 Billong N, Kinuthia J, Oti J, et al. Construction and Building Materials, 2018, 189, 307.
42 Koenig A, Mahmoud H, Bhre O, et al. Molecules, 2020, 25, 2359.
43 Pereira C F, Galiano Y L, Clemente M P, et al. Materials Letters, 2018, 227, 184.
44 Gevaudan J P, Santa-Ana B, Srubar W V. Cement and Concrete Compo-sites, 2020, 116, 103867.
45 Ababneh F A, Alakhras A I, Heikal M, et al. Construction and Building Materials, 2019, 227, 116694.
46 Boca S R A A, Soares C, Riella H G. Journal of Hazardous Materials, 2016, 318, 145.
47 Torgal F P, Gomes J C, Jalali S. Construction and Building Materials, 2008, 22, 1315.
48 Ji Z H, Pei Y S. Journal of Hazardous Materials, 2019, 384, 121290.
49 Xu J Z, Zhou Y L, Tang R X. Journal of Building Materials, 2006, 9(3), 341 (in Chinese).
徐建中, 周云龙, 唐然肖. 建筑材料学报, 2006, 9(3), 341.
50 Cheng T W, Lee M L, Ko M S, et al. Applied Clay Science, 2012, 56, 90.
51 An J P, Lu Z Y, Yan Y. China Powder Science and Technology, 2008, 14(4), 33(in Chinese).
安金鹏, 卢忠远, 严云. 中国粉体技术, 2008, 14(4), 33.
52 Sun Y F, Hu S G, Zhang P, et al. Journal of Cleaner Production, 2020, 272, 122957.
53 Wang C Y. Research on lixiviation and solidified mechanism of heavy metals in cement and concrete. Ph. D. Thesis, Beijing University of Technology, China, 2004 (in Chinese).
王彩云. 重金属元素在水泥混凝土中的浸出性及固化机理研究. 博士学位论文, 北京工业大学, 2004.
54 Ortego J D, Barroeta Y. Environmental Science and Technology, 1991, 25, 1171.
55 Muhammad F, Huang X, Li S, et al. Journal of Cleaner Production, 2018, 188, 807.
56 Ye N, Chen Y, Yang J, et al. Journal of Hazardous Materials, 2016, 318, 70.
57 Meng L F, Zheng J R. Bulletin of the Chinese Ceramic Society, 2010(5), 1031 (in Chinese).
孟丽峰, 郑娟荣. 硅酸盐通报, 2010(5), 1031.
58 Hills C D, Pollard S. Journal of Hazardous Materials, 1997, 52, 171.
59 Xia M, Muhammad F, Zeng L H, et al. Journal of Cleaner Production, 2019, 209, 1206.
60 Tessier A, Campbell P G C, Bisson M. Analytical Chemistry, 1979, 51, 844.
61 Zhang H, Zhang S L, Zhang W, et al. Gansu Agriculture, 2011(2), 86 (in Chinese).
张豪, 张松林, 张威, 等. 甘肃农业, 2011(2), 86.
62 Lee W, Deventer J. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2002, 211, 115.
63 Lee W, Deventer J V. Langmuir, 2003, 19, 8726.
64 Zhou X, Hu B, Tong J, et al. Chinese Journal of Geotechnical Enginee-ring, 2020, 42(S1), 239.
周显, 胡波, 童军, 等. 岩土工程学报, 2020, 42(S1), 239.
65 Qin X L. Sci-Tech and Development of Enterprise, 2020, 469(11), 87 (in Chinese).
秦潇亮. 企业科技与发展, 2020, 469(11), 87.
66 Pengou M, Ngassa G B P, Boutianala M, et al. Journal of Solid State Electrochemistry, 2021, 25, 1183.
67 Roghanian N, Banthia N. Cement and Concrete Composites, 2019, 100, 99.
68 Grengg C, Mittermayr F, Ukrainczyk N, et al. Water Research, 2018, 134, 341.
69 Demir F, Derun E M. Journal of Cleaner Production, 2019, 237, 117766.
70 Pu S Y, Zhu Z D, Song W L, et al. Journal of Hazardous Materials, 2021, 415, 125659.
[1] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[2] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[3] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[4] 申昕, 徐玉平, 吕一鸣, 周海山, 罗广南. 液态锂铅与阻氚涂层材料相容性的研究进展[J]. 材料导报, 2023, 37(1): 21060272-8.
[5] 梁娜, 姚存峰, 龙斌, 付晓刚. 铅冷快堆结构材料耐蚀涂层技术研究概述[J]. 材料导报, 2022, 36(23): 21090168-7.
[6] 丁琳, 王鹏翔, 刘浩, 熊谟鹏, 王慧凌. 功能化金属-有机框架材料吸附去除废水中铅离子的研究进展[J]. 材料导报, 2022, 36(20): 22070013-11.
[7] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[8] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[9] 刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
[10] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[11] 李芳, 李才巨, 彭巨擘, 易健宏, 高鹏, 张家涛, 关洪达, 关一凡. 锡锌系无铅钎料合金化研究进展[J]. 材料导报, 2022, 36(13): 20010038-10.
[12] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[13] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[14] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[15] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed