Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21060272-8    https://doi.org/10.11896/cldb.21060272
  无机非金属及其复合材料 |
液态锂铅与阻氚涂层材料相容性的研究进展
申昕1,2, 徐玉平1,*, 吕一鸣1, 周海山1, 罗广南1,2
1 中国科学院合肥物质科学研究院,等离子体物理研究所,合肥 230031
2 中国科学技术大学,合肥 230026
Review on Compatibility of Liquid Lithium-Lead with Tritium Permeation Barrier
SHEN Xin1,2, XU Yuping1,*, LYU Yiming1, ZHOU Haishan1, LUO Guangnan1,2
1 Institute of Plasma Physics,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 8402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在聚变堆液态锂铅包层设计中,结构材料表面需覆盖一层阻氚涂层。涂层一般需要兼顾两方面功能:(1)高阻氢渗透因子,能够稳定地抑制氢渗透以维持反应堆的氚安全;(2)较高的耐腐蚀性能,以保证结构材料的结构完整性及热力学性能稳定性。阻氚涂层与锂铅直接接触会发生腐蚀,产生缺陷(如腐蚀坑等),影响涂层结构稳定性和阻氢渗透效率,进而直接影响涂层的服役寿命。本文重点综述了液态锂铅与阻氚涂层的相容性以及液态锂铅腐蚀对阻氚涂层阻氢性能影响的相关研究进展。已有的研究显示,Cr2O3-Er2O3-ZrO2涂层、铝基涂层等在静止液态锂铅环境中均展现了良好的相容性和稳定的阻氢性能。本文还指出了目前相关研究存在的共性问题及未来可能的研究发展趋势。相关领域还需进行更为全面、系统的研究,为未来聚变增殖包层中阻氚涂层的服役寿命评估提供支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申昕
徐玉平
吕一鸣
周海山
罗广南
关键词:  阻氚涂层  液态锂铅  腐蚀  聚变堆增殖包层  阻氢渗透    
Abstract: In the design of a liquid lithium-lead blanket in fusion reactor, a layer that has high permeation reduction factor should be prepared on the surface of the structural materials as tritium permeation barrier(TPB). TPBs could not only reduce hydrogen isotope permeability for the safety concern of the tritium, but also have great corrosion resistance to maintain the structural integrity and the stability of thermodynamic property of structural materials. TPB that directly contacts with liquid metals will be corroded, resulting in defects(such as corrosion pits, etc.) which straightly affect its service life. In this paper, the compatibility of liquid lithium-lead with TPB, together with the hydrogen isotope permeation resistance property of the barrier before and after corrosion was reviewed. It has shown in previous studies that Cr2O3-Er2O3-ZrO2 multilayer and aluminum-based coating are utilized as TPBs indicating promising compatibility and tritium resistance property under static liquid lithium-lead environment. The main existing problems and research tendency were also presented in this paper. A large number of comprehensive and systematic studies are needed in related fields to provide data support for the evaluation of the service life of TPBs for future fusion breeder blanket.
Key words:  tritium permeation barrier    liquid lithium-lead    corrosion    fusion breeder blanket    hydrogen permeation reduction
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TL627  
基金资助: 国家磁约束核聚变能发展研究专项资助(2019YFE03130004);国家自然科学基金(11905246)
通讯作者:  * 徐玉平,中国科学院合肥物质科学研究院等离子体物理研究所副研究员,国家博士后创新人才支持计划获得者。2012年本科毕业于西北工业大学,2017年在中国科学技术大学/中科院等离子体物理研究所取得核能科学与工程博士学位。2017年至今在中国中科院合肥物质科学研究院工作,长期从事聚变材料与氢同位素相互作用的研究。已在聚变领域专业期刊以第一作者/通信作者发表论文10余篇,包括 Nuclear Fusion、Journal of Nuclear Materials 等。xuyp@ipp.ac.cn   
作者简介:  申昕,2020年7月毕业于南昌航空大学,获得工学学士学位。现为中国科学技术大学研究生院科学岛分院和中国科学院等离子体物理研究所联合培养的硕士研究生,在罗广南研究员和徐玉平副研究员的指导下进行研究。目前主要研究领域为聚变堆阻氚涂层的服役性能。
引用本文:    
申昕, 徐玉平, 吕一鸣, 周海山, 罗广南. 液态锂铅与阻氚涂层材料相容性的研究进展[J]. 材料导报, 2023, 37(1): 21060272-8.
SHEN Xin, XU Yuping, LYU Yiming, ZHOU Haishan, LUO Guangnan. Review on Compatibility of Liquid Lithium-Lead with Tritium Permeation Barrier. Materials Reports, 2023, 37(1): 21060272-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060272  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21060272
1 Zhao L J, Xiao J C, Long X G, et al. Journal of Nuclear and Radioche-mistry, 2019, 41(1), 40(in Chinese).
赵林杰, 肖成建, 龙兴贵, 等. 核化学与放射化学, 2019, 41(1), 40.
2 Ma X B, Cheng X M, Li X, et al. Fusion Engineering and Design, 2019, 148, 111317.
3 Huang Q Y, Li J C, Li Y F, et al. Nuclear Science and Engineering, 2007(1), 41(in Chinese).
黄群英, 李春京, 李艳芬, 等. 核科学与工程, 2007(1), 41.
4 Huang Q Y, Zhang M, Zhu Z Q, et al. Fusion Engineering and Design, 2007, 82(15-24), 2655.
5 Tanabe T. Fusion Engineering and Design, 2012, 87(5-6), 722.
6 Cramer B A, Davis J W. Nuclear Engineering and Design, 1980, 58(2), 267.
7 Causey R A, Karnesky R A, Marchi C S. Comprehensive Nuclear Materials, 2012, 4, 511.
8 Wang T S, Pu J, Bo C, et al. Fusion Engineering and Design, 2010, 85(7-9), 1068.
9 Xiang X, Wang X L, Zhang G K, et al. International Journal of Hydrogen Energy, 2015, 40(9), 3697.
10 Benamati G, Chabrol C, Perujo A, et al. Journal of Nuclear Materials, 1999, 271-272, 391.
11 Liu H, Jie T, Jiang X, et al. Surface and Coatings Technology, 2009, 204(1-2), 28.
12 Lin N M, Xie F Q, Wu X Q, et al. Journal of Rare Earths, 2011, 29(4), 396.
13 Nakamichi M, Kawamura H. Journal of Nuclear Materials, 1998, 258, 1873.
14 Levchuk D, Levchuk S, Maier H, et al. Journal of Nuclear Materials, 2007, 367-370(1), 1033.
15 Yao Z, Suzuki A, Levchuk D, et al. Journal of Nuclear Materials, 2009, 386, 700.
16 Chikada T, Suzuki A, Yao Z, et al. Fusion Engineering and Design, 2009, 84(2), 590.
17 Levchuk D, Bolt H, Döbeli M, et al. Surface and Coatings Technology, 2008, 202(20), 5043.
18 Hatano Y, Zhang K, Hashizume K. Physica Scripta, 2011, 2011, 014044.
19 Hassanein A. In:Proceedings of the NATO Advanced Research Workshop. Argonne, 2002, pp. 235.
20 Shan C Q, Wu A J, Zhao Z Q, et al. Journal of Nuclear Materials, 1992, 191, 221.
21 Devia D M, Restrepo-Parra E, Arango P J. Applied Surface Science, 2011, 258(3), 1164.
22 Popov V V, Denisov E A. In: NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Sevastopol, 2007, pp. 671.
23 Chikada T, Suzuki A, Terai T. Fusion Engineering and Design, 2011, 86(9-11), 2192.
24 Nemanic V, McGuiness P J, Daneu N, et al. Journal of Alloys and Compounds, 2012, 539(1), 184.
25 Causey R A, Wampler W R. Journal of Nuclear Materials, 1995, 220-222, 823.
26 Kulsartov T V, Hayashi K, Nakamichi M, et al. Fusion Engineering and Design, 2006, 81(1-7), 701.
27 Checchetto R, Bonelli M, Gratton L M, et al. Surface and Coatings Technology, 1996, 83(1-3), 40.
28 Martinez-Landeros V H, Gnade B E, Quevedo-lopez M A, et al. Journal of Sol-Gel Science and Technology, 2011, 59(2), 345.
29 Nakamichi M, Kulsartov T V, Hayashi K, et al. Fusion Engineering and Design, 2007, 82(15-24), 2246.
30 Liu H, Jie T, Gautreau Y, et al. Materials and Design, 2009, 30(8), 2785.
31 Yang F, Wu P, Yan D, et al. Surface and Coatings Technology, 2014, 238(2), 174.
32 Chikada T, Suzuki A, Koch F, et al. Journal of Nuclear Materials, 2013, 442(1-3), 592.
33 Chikada T, Suzuki A, Terai T, et al. Fusion Engineering and Design, 2013, 88(6-8), 640.
34 Yan Z, Huang Q, Guo Z, et al. Fusion Engineering and Design, 2010, 85(7-9), 1542.
35 Krauss W, Konys J, Holstein N, et al. Journal of Nuclear Materials, 2011, 417(1-3), 1233.
36 Zhang G K, Chen C A, Luo D L, et al. Fusion Engineering and Design, 2012, 87(7-8), 1370.
37 Perujo A, Forcey K S. Fusion Engineering and Design, 1995, 28, 252.
38 Chikada T, Moeki M, Seira H, et al. Fusion Engineering and Design, 2018, 136, 215.
39 Moeki M, Seira H, Jumpei M, et al. Journal of Nuclear Materials, 2018, 511, 537.
40 Mochizuki J, Horikoshi S, Fujita H, et al. Fusion Engineering and Design, 2018, 136, 219.
41 Akahoshi E, Matsunaga M, Kimura K, et al. Corrosion Science, 2021, 189(3), 109583.
42 Akahoshi E, Matsunaga M, Kimura K, et al. Fusion Engineering and Design, 2020, 160, 111874.
43 Seira H, Moeki M, Jumpei M, et al. Nuclear Materials and Energy, 2018, 16, 66.
44 Glasbrenner H, Konys J, Voss Z, et al. Journal of Nuclear Materials, 2002, 307, 1360.
45 Pint B A, Moser J L, Tortorelli P F. Journal of Nuclear Materials, 2007, 367, 1150.
46 Pint B A, Unocic K A. Journal of Nuclear Materials, 2013, 442(1-3), 572.
47 Konys J, Krauss W, Holstein N, et al. Corrosion, 2011, 67(2), 1.
48 Iadicicco D, Vanazzi M, Ferré F G, et al. Fusion Engineering and Design, 2019, 146, 1628.
49 Iadicicco D, Bassini S, Vanazzi M, et al. Nuclear Fusion, 2018, 58(12), 126007.
50 Chikada T, Fujita H, Matsunaga M, et al. Fusion Engineering and Design, 2017, 124, 915.
51 Magielsen A J, Bakker K, Chabrol C, et al. Journal of Nuclear Materials, 2002, 307, 832.
52 Conrad R, Futterer M A, Giancarli L, et al. Journal of Nuclear Materials, 1994, 212, 998.
53 Liu F, Xu Y P, Zhou H S, et al. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2015, 351, 23.
54 Was G, Averback R S. Comprehensive nuclear materials, Elsevier, USA, 2012, pp. 195.
55 Shimada M, Hatano Y, Oya Y, et al. Fusion Engineering and Design, 2012, 87, 1166.
56 Yao Z, Suzuki A, Levchuk D, et al. Journal of Nuclear Materials, 2009, 386, 700.
57 Bhuvaneswaran N, Mudali U K, Shankar P. Scripta Materialia, 2003, 49(11), 1133.
58 Barin I, Platzki G. Thermochemical data of pure substances, Verlagsgesellschaf, Germany, 1995, pp. 975.
59 Nemanic V. Nuclear Materials and Energy, 2019, 19, 451.
60 Hollenberg G W, Simonen E P, Kalinin G, et al. Fusion Engineering and Design, 1995, 28(1-2), 190.
61 Pan X D. Influence of irradiation damages on the permeation of hydrogen in Al2O3. Ph. D. Thesis, University of Science and Technology of China, China, 2021(in Chinese).
潘新东. 辐照损失对氢在氧化铝内部渗透行为影响的研究. 博士学位论文, 中国科学技术大学, 2021.
62 Chikada T, Suzuku A, Maier H, et al. Fusion Science and Technology, 2011, 60(1), 389.
63 Chikada T, Tanaka T, Yuyama K, et al. Nuclear Materials and Energy, 2016, 9, 529.
64 Chikada T, Suzuki A, Adelhelm C, et al. Nuclear Fusion, 2011, 51(6), 063023.
65 Aiello A, Benamati G, Chini M, et al. Fusion Engineering and Design, 2001, 58-59, 737.
66 Smolentsev S, Morley N, Abdou M, et al. Fusion Engineering and Design, 2015, 100, 44.
67 Zeng Z, Jiang J, Chen S, et al. Fusion Engineering and Design, 2020, 152, 111414.
68 Fernández I, Palermo I, Urgorri F R. Fusion Engineering and Design, 2021, 167, 112380.
69 Jiang K C, Yu Y, Ma X B, et al. Energies, 2021, 14(19), 6350.
70 Luo D, Huang G, Huang Z, et al. Fusion Engineering and Design, 2016, 109-111, 416.
71 Conrad R. Fusion Engineering and Design, 1991, 14(3-4), 289.
72 Miura S, Nakamura K, Akahoshi E, et al. Fusion Engineering and Design, 2021, 170, 112536.
73 Hishinuma Y, Tanaka M, Tanaka T, et al. Nuclear Materials and Energy, 2018, 16, 123.
74 Ferre F G, Mairov A, Vanazzi M, et al. Acta Materialia, 2018, 143, 156.
75 Nakamura K, Fujita H, Engels J, et al. Journal of Nuclear Materials, 2020, 537, 152244.
76 Nakamura K, Fujita H, Engels J, et al. Fusion Engineering and Design, 2019, 146, 2031.
77 Wong C P C, Chernov V, Kimura A, et al. Journal of Nuclear Materials, 2007, 367-370, 1287.
[1] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[2] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[3] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[4] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[5] 孟子毅, 李静, 蒯荣, 雷乾杰, 付旭东, 张荣, 胡圣飞, 刘清亭. 微生物矿化改性蒙脱土补强天然橡胶的效果[J]. 材料导报, 2022, 36(Z1): 21090113-6.
[6] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[7] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[8] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[9] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[10] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[11] 胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
[12] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[13] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[14] 杨贵荣, 宋文明, 潘照霞, 马颖, 郝远. 气相压力对CO2/H2O气液两相泡状流中20#钢初期腐蚀行为的影响[J]. 材料导报, 2022, 36(24): 21110057-6.
[15] 陈亚军, 韦第升, 彭剑书, 宋先捷. 基于蚀坑形貌特征的2198-T8铝锂合金预腐蚀疲劳寿命预测[J]. 材料导报, 2022, 36(21): 21080028-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed