Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21110057-6    https://doi.org/10.11896/cldb.21110057
  金属与金属基复合材料 |
气相压力对CO2/H2O气液两相泡状流中20#钢初期腐蚀行为的影响
杨贵荣1,*, 宋文明2, 潘照霞1, 马颖1, 郝远1
1 兰州理工大学有色金属先进加工与再利用国家重点实验室,兰州 730050
2 甘肃蓝科石化高新装备股份有限公司,兰州 730070
Effect of CO2 Pressure on Initial Corrosion Behavior of 20# Steel Under the Gas-Liquid (CO2/Aqueous Solution) Two-phases Bubble Flow
YANG Guirong1,*, SONG Wenming2, PAN Zhaoxia1, MA Ying1, HAO Yuan1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050,China
2 Gansu Lanke Petrochemical High-tech Equipment Co., Ltd., Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 29516KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在气液两相流条件下,为研究CO2压力对20#钢初期腐蚀行为的影响,采用气液两相流的动态腐蚀平台,通过失重法、SEM、EDS、XRD等系统研究了20#钢在不同CO2压力下的腐蚀速率、腐蚀形貌及产物。结果表明:在不同腐蚀时间下,腐蚀速率均随CO2压力的增大呈先减小后增大的趋势,在CO2压力为0.1 MPa时出现最小值,同一CO2压力下腐蚀速率偏差随着时间的延长明显降低,表面腐蚀产物的致密度随着CO2压力的增加而提高,不同CO2压力下管壁表面腐蚀后的形貌呈现两种不同的特征,即粗糙区和相对平滑区,两种特征区内均包括相对均匀产物与突起产物,均匀产物中C和O的含量均低于突起产物,两种产物中C和O的含量随CO2压力的升高而升高,表面腐蚀产物的主要构成相为FeCO3、γ-FeOOH、Fe3O4
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨贵荣
宋文明
潘照霞
马颖
郝远
关键词:  气液两相泡状流  CO2压力  腐蚀产物特征  成分    
Abstract: The effect of CO2 pressure on the initial corrosion behavior of 20# seamless steel was studied on the dynamic corrosion platform of gas-liquid two-phase flow through weight-loss method, SEM, EDS and XRD. The corrosion rate, micro-structure and composition of corrosion products were studied systematically. Results showed that the corrosion rate decreased first and then increased with the increasing CO2 pressure under different corrosion time conditions. The corrosion rate reached minimum value when CO2 pressure was 0.1 MPa under experimental conditions. Under the same CO2 pressure, the corrosion rate deviation decreased obviously with the extension of time. The density of corrosion products increased with the increasing CO2 pressure. The corrosion morphology of pipe wall surface under different CO2 pressure conditions showed two kinds of different characteristics, namely rough area and smooth area. Both types of feature morphology area contain relatively homogeneous corrosion products and protruding corrosion products. The content of C and O in the homogeneous corrosion products was lower than that in the protruding corrosion products, and the content of C and O increased with the increasing CO2 pressure. The main phases of the corrosion products are FeCO3, γ-FeOOH and Fe3O4.
Key words:  gas-liquid two-phases bubble flow    CO2 pressure    characteristics of corrosion products    composition
发布日期:  2023-01-03
ZTFLH:  TG172.3  
基金资助: 国家自然科学基金(51765035);先进反应堆工程与安全教育部重点实验室开放基金(ARES-2022-2)
通讯作者:  yanggrming@lut.edu.cn   
作者简介:  杨贵荣,兰州理工大学材料科学与工程学院教授、博士研究生导师。2000年河北科技大学铸造专业本科毕业,2003年兰州理工大学材料加工专业硕士毕业后留校任教至今,2006年兰州理工大学材料加工工程专业博士毕业。目前主要从事表面耐磨耐蚀复合材料、石化用钢材的腐蚀行为机制及石化部件的失效分析等方面的研究工作。发表相关论文100余篇,包括Surface Coating & Technology、 Mate-rials Science and Engineering A、Wear、International Journal of Materials Research等,申请发明专利7项,获得授权两项。
引用本文:    
杨贵荣, 宋文明, 潘照霞, 马颖, 郝远. 气相压力对CO2/H2O气液两相泡状流中20#钢初期腐蚀行为的影响[J]. 材料导报, 2022, 36(24): 21110057-6.
YANG Guirong, SONG Wenming, PAN Zhaoxia, MA Ying, HAO Yuan. Effect of CO2 Pressure on Initial Corrosion Behavior of 20# Steel Under the Gas-Liquid (CO2/Aqueous Solution) Two-phases Bubble Flow. Materials Reports, 2022, 36(24): 21110057-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110057  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21110057
1 Kermani M B, Morsed A. Corrosion, 2003, 59(8), 659.
2 Crolet J L. In: Proceedings from 10th European Corrosion, Progress in the Understanding and Prevention of Corrosion. London, 1994, pp. 1.
3 Schmitt G, Bakalli M. Materials and Corrosion, 2008,59(2),181.
4 Forero A B, Núñez M M G, Bott I S, et al. Materials Research, 2014, 17(2),461.
5 Lee K. A mechanistic modeling of CO2 corrosion of mild steel in the presence of H2S. Ph.D. Thesis, Ohio University, USA, 2004.
6 Nesic S, Kahyarian A, Choi Y S. Corrosion, 2019,75(3),274.
7 Sun W, Nesic S. Corrosion, 2009, 65(5),291
8 Nesic S, Lunde L. Energy & Fuel, 2012,26(7),4098.
9 Zhang Y B, Yan K, Che D F, et al. American Institute of Physics, 2010, 1207(2), 403.
10 Song W M, Yang G R, Dong X J, et al. Journal of Harbin Institute of Technology, 2017, 49(11), 115 (in Chinese).
宋文明, 杨贵荣, 董雪娇, 等. 哈尔滨工业大学学报, 2017, 49(11), 115.
11 Yang G R, Zhu Z B, Song W M, et al. Materials Research Express, 2019,6(6),066512.
12 Villarreal J, Laverde D, Fuentes C. Corrosion Science, 2006, 48(9), 2363.
13 Li W, Pots B F M, Brown B, et al. Corrosion Science, 2016, 110, 35.
14 Liu Y. Numerical simulations on phase split phenomenon in two-phase bubbly and annular flow in T-junction. Ph.D. Thesis, Dalian University of Technology, China, 2011(in Chinese).
刘杨. T形管内气液两相泡状与环状流的相分离数值模拟. 博士学位论文,大连理工大学, 2011.
15 Miller D L. Ultrosonic,1984,22(6),261
16 Dugstad A, Hemmer H, Seiersten M. In: NACE International Annual Conference & Exposition Corrosion. Orlando FL,2000, pp.4.
17 Zhang G A, Cheng Y F. Corrosion Science, 2009, 51, 1589.
18 Chen C F, Zhao G X, Yan M L, et al. Journal of Chinese Society for Corrosion and Protection, 2002, 38(6), 335 (in Chinese).
陈长风, 赵国仙, 严密林, 等. 中国腐蚀与防护学报, 2002, 38(6), 335.
19 Choi Y S, Nesic S, Ling S. Electrochemical Acta, 2011, 56, 1752.
[1] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[2] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[3] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[4] 商怀帅, 邵姝文, 冯海暴, 李永升. NPR钢筋力学性能试验研究[J]. 材料导报, 2022, 36(10): 21010164-7.
[5] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[6] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[7] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[8] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[9] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[10] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
[11] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[12] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[13] 胡贵生, 章超, 钱晨阳, 文建新. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2): 233-238.
[14] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[15] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed