Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21010164-7    https://doi.org/10.11896/cldb.21010164
  金属与金属基复合材料 |
NPR钢筋力学性能试验研究
商怀帅1,*, 邵姝文1, 冯海暴2, 李永升3
1 青岛理工大学土木工程学院,山东 青岛 266033
2 中交一航局有限公司,天津 300000
3 青岛中航工程试验检测有限公司,山东 青岛 266033
Experimental Study on Mechanical Properties of NPR Steel Bar
SHANG Huaishuai1,*, SHAO Shuwen1, FENG Haibao2, LI Yongsheng3
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033,Shandong, China
2 China Communications No.1 Aviation Bureau Company, Tianjin 300000,China
3 Qingdao Aviation Engineering Test Company, Qingdao 266033,Shandong, China
下载:  全 文 ( PDF ) ( 7177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 国内研发了一种新型高强、高延性钢筋——NPR(Negative poisson ratio)钢筋,该新型钢筋具有无磁、抗腐蚀、抗强磁场磁化的特点。本工作对NPR钢筋的化学成分、洛式硬度、金相组织及静载拉伸力学性能进行了试验研究与分析。结果表明,NPR钢筋中的C、Mn元素含量较HRB400钢筋存在明显差异,其洛式硬度较HRB400钢筋有所提高,NPR钢筋的金相组织为全奥氏体;NPR钢筋在拉伸过程中无明显颈缩现象,宏观断口形貌呈韧性断裂特征。应力-应变曲线表明其屈服平台消失,无明显屈服强度;NPR钢筋的屈服强度、抗拉强度、断后伸长率、最大力总伸长率等力学性能指标较HRB400钢筋均有显著提高。基于试验结论,采用Ramberg-Osgood模型对NPR钢筋实测的应力-应变曲线进行了拟合,拟合曲线与实测曲线吻合较好。本工作可为NPR新型钢筋的推广和应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
商怀帅
邵姝文
冯海暴
李永升
关键词:  NPR钢筋  化学成分  金相组织  力学性能  Ramberg-Osgood模型    
Abstract: Anew type of high strength and high ductility steel bar(negative poisson ratio (NPR) steel bar) has been developed in China. The new steel bar also has the characteristics of non-magnetic, anti-corrosion and strong magnetic field magnetization resistance. In this work, the chemical composition, Rockwell hardness, metallographic structure and static tensile mechanical properties of the NPR steel bars have been tested and analyzed. The results show that the content of C and Mn in NPR steel bars is significantly different from that in HRB400 steel bars. Its Rockwell hardness is higher than that of HRB400 steel bars and the metallographic structure of NPR steel bars shows that it is a fully austenitic material. NPR steel bars have no obvious necking phenomenon during the stretching process, and the macroscopic fracture morphology shows ductile fracture characteristics. The stress-strain curve of NPR steel bars shows that its yield platform disappears and there is no obvious yield strength. The mechanical properties of NPR steel bars, such as yield strength, tensile strength, elongation after fracture and total elongation at maximum force, are significantly higher than those of HRB400 steel bars. Based on the experimental conclusions, the Ramberg-Osgood model is used to fit the measured stress-strain curve of NPR steel bars, and the fitting curve is in good agreement with the measured curve. This work can provide a theo-retical basis for the promotion and application of NPR new steel bars.
Key words:  NPR steel bar    chemical composition    microstructure    mechanical properties    Ramberg-Osgood model
发布日期:  2022-05-24
ZTFLH:  TU375  
基金资助: 国家自然科学基金资助项目(51778310);滨海城乡建设工程安全与性能提升研究创新团队项目;山东省“双一流”建设工程-土木
通讯作者:  shanghuaishuai@163.com   
作者简介:  商怀帅,青岛理工大学教授、博士研究生导师。2007年获得大连理工大学土木工程专业博士学位。主要从事钢筋混凝土结构的研究,包括混凝土的耐久性、钢筋与混凝土的粘结性能、混凝土在复杂应力状态下的破坏准则和钢筋混凝土构件的承载力。在国内外期刊上发表论文70余篇,先后获得国家授权发明专利10项,获省部级奖励5项。
引用本文:    
商怀帅, 邵姝文, 冯海暴, 李永升. NPR钢筋力学性能试验研究[J]. 材料导报, 2022, 36(10): 21010164-7.
SHANG Huaishuai, SHAO Shuwen, FENG Haibao, LI Yongsheng. Experimental Study on Mechanical Properties of NPR Steel Bar. Materials Reports, 2022, 36(10): 21010164-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010164  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21010164
1 Kuang H W, Pan W, Ye L Y. Industrial Architecture, 2016(S1),629 (in Chinese).
况浩伟, 潘文, 叶燎原. 工业建筑, 2016(S1),629.
2 Wang J J, Su J S, Wang W B, et al. China Journal of Highway and Transport, 2015, 28(5), 93(in Chinese).
王君杰, 苏俊省, 王文彪, 等. 中国公路学报, 2015, 28(5), 93.
3 Aldabagh S, Alam M S. Engineering Structures, 2021, 235,112114.
4 EN1992-1-1. Euro-code2: Design for concrete structures-Part1: General rules and rules for building. London: European Committee for Standardization, 2004.
5 GB 50010—2010 混凝土结构设计规范. 中国建筑工业出版社, 2010.
6 GB/T 1499.2-2018钢筋混凝土用钢 第2部分: 热轧带肋钢筋. 中国标准出版社, 2018.
7 Lin F, Dong Y, Gu X L. Journal of Building Materials, 2014, 17(4), 592(in Chinese).
林峰, 董羽, 顾祥林. 建筑材料学报, 2014, 17(4),592.
8 Chen W, Yan X J, Zhao Y, et al. Journal of Central South University(Science and Technology), 2012, 43(7), 2566(in Chinese).
陈伟, 严锡九, 赵宇, 等. 中南大学学报(自然科学版), 2012, 43(7),2566.
9 Wang Q F, Wu H C, Xu Y Y, et al. Journal of Building Structures, 2011, 32(2),120(in Chinese).
王全凤, 吴红翠, 徐玉野, 等. 建筑结构学报, 2011, 32(2),120.
10 Wang T C, Li Y Y, Rong X. Journal of Tianjin University, 2007(5),507 (in Chinese).
王铁成, 李艳艳, 戎贤. 天津大学学报, 2007(5),507.
11 Zhao Y, Wang X F, Chen Z J, et al. Journal of Building Structures, 2011, 32(1),50(in Chinese).
赵勇, 王晓锋, 程志军, 等. 建筑结构学报, 2011, 32(1),50.
12 Guan J F, Zhang Q, Wang D, et al. Journal of Basic Science and Engineering, 2018, 26(1),122 (in Chinese).
管俊峰, 张谦, 王丹, 等. 应用基础与工程科学学报, 2018, 26(1),122.
13 Sun C Z, Wang K Q, Qiao Y, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2019, 51(3),355 (in Chinese).
孙传智, 王可卿, 乔燕, 等. 西安建筑科技大学学报(自然科学版), 2019, 51(3),355.
14 Sun C Z, Li A Q, Miao C Q, et al. Journal of Chang'an University(Natural Science Edition), 2018, 38(6), 89 (in Chinese).
孙传智, 李爱群, 缪长青, 等. 长安大学学报(自然科学版), 2018, 38(6),89.
15 Li Y Y, Li X Q, Su H B. Journal of Civil and Environmental Enginee-ring, 2017, 39(2),19 (in Chinese).
李艳艳, 李晓清, 苏恒博. 土木建筑与环境工程, 2017, 39(2),19.
16 Li Y Z, Cao S Y, Xu P J, et al. Engineering Mechanics, 2018, 35(11),181 (in Chinese).
李义柱, 曹双寅, 许鹏杰, 等. 工程力学, 2018, 35(11),181.
17 Sun C Z, Miao C Q, Li A Q, et al. Journal of Building Structures, DOI:org/10.14006/j.jzjgxb (in Chinese).
孙传智, 缪长青, 李爱群, 等. 建筑结构学报, DOI:org/10.14006/j.jzjgxb.
18 Su L Y, Deng Y, Ran X Z, et al. Journal of Chongqing University of Technology(Natural Science), 2009, 23(2),36 (in Chinese).
苏理云, 邓燕, 冉雪竹, 等. 重庆理工大学学报(自然科学版), 2009, 23(2),36.
19 Liu Y Y, Gao J Y, Chen L, et al. Journal of Inner Mongolia University of Science and Technology, 2006(1), 18 (in Chinese).
刘宇雁, 高箭宇, 陈林, 等. 包头钢铁学院学报, 2006(1),18.
20 GB/T228.1-2010 金属材料拉伸试验 第1部分: 室温试验方法.中国标准出版社, 2016.
21 ASTM A706 /A706M-14. Standard specification for deformed and plain low-alloy steel bars for concrete reinforcement, ASTM International. West Conshohocken, PA, 2014.
22 Ramberg W, Osgood W R. Washington: National Advisory Committee for Aeronautics, TN 902, 1943.
23 Wang Y J, Fan F, Qian H L, et al. Journal of Building Structures, 2013, 34(6),113 (in Chinese).
王誉瑾, 范峰, 钱宏亮, 等. 建筑结构学报, 2013, 34(6),113.
24 Dou Z J, Zhu X, Sun W, et al. Nonferrous Metals Processing, 2020, 49(4),51 (in Chinese).
窦志家, 祝哮, 孙巍, 等. 有色金属加工, 2020, 49(4),51.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[7] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[8] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[9] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[10] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[11] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[12] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[13] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[14] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[15] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed