Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21010222-6    https://doi.org/10.11896/cldb.21010222
  高分子与聚合物基复合材料 |
PEDOT夹心PVDF多孔膜的电驱动性能研究
张晓蝶, 丁井鲜, 黄建建, 王放, 马丽, 郭东杰*
郑州轻工业大学河南省表界面重点实验室,郑州 450002
Electromechanical Response of Porous PVDF Film Sandwiched by PEDOT Electrodes
ZHANG Xiaodie, DING Jingxian, HUANG Jianjian, WANG Fang, MA Li, GUO Dongjie*
State Laboratory of Surface & Interface, Zhengzhou University of Light Industry, Zhengzhou 450002, China
下载:  全 文 ( PDF ) ( 9626KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 常规离子聚合物金属复合材料(IPMC)以Pt金属纳米颗粒为电极、Nafion膜作为母体,存在电极刚性大、电极与聚合物母体不兼容、制备成本高等缺陷。本工作采用聚乙烯吡咯烷酮和聚氧化乙烯作为造孔剂、离子液([EMIm]·[BF4])为增塑剂,制备了高多孔度的柔性聚偏氟乙烯(PVDF)母体膜。物化性能测试表明:PVDF膜的多孔度高达26.3%,杨氏模量仅为17.1 MPa。以3,4-乙烯二氧噻吩(EDOT)为单体、FeCl3为催化剂,利用原位化学沉积方法在PVDF膜两侧制备了导电聚(3,4-乙烯二氧噻吩)(PEDOT)电极。施加交流电场后,得到PEDOT电极的IPMC致动器。在0.1 Hz、22 V的条件下,新型IPMC致动器具备连续稳定的驱动性能,末端最大位移输出为6.0 mm。改变驱动电压或频率,位移输出随之发生变化,IPMC致动器展现出了良好的可控性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓蝶
丁井鲜
黄建建
王放
马丽
郭东杰
关键词:  离子聚合物金属复合材料  电活性聚合物(EAP)  聚(3,4-乙烯二氧噻吩)  聚偏氟乙烯  离子液    
Abstract: Conventional ionic polymer-metal composite (IPMC) employs Pt metal nanoparticles as electrodes and Nafion membrane as matrix film, and thus brings severe drawbacks of high electrode rigidity of electrode, an incompatibility between the matrix and the electrodes, and high cost of fabrication. This work used polyvinylpyrrolidone and polyvinyl oxide as the pore-forming agents and ionic liquid of [EMIm]·[BF4] as the plasticizer to prepare a highly porous flexible polyvinylidene fluoride (PVDF) matrix film. Physicochemical tests showed that PVDF matrix presented the high porosity of 26.3% and the low Young's modulus of 17.1 MPa. Using 3, 4-vinylenedioxythiophene (EDOT) as the monomer and FeCl3 as the catalyst, conductive PEDOT electrodes were anchored on both sides of the PVDF film by in-situ chemical deposition. After applying an AC electric field, a novel IPMC actuator using PEDOT electrode was obtained. In the condition of 0.1 Hz and 22 V, the resultant IPMC actuator showed continuous and stable driving behaviors with a maximum displacement output of 6.0 mm. With driven voltage or frequency changing, the displacement outputs subsequently changed, the IPMC actuator showing a good controllability.
Key words:  ionic exchange polymer metal composite    electroactive polymer    poly(3,4-ethylenedioxythiophene)    polyvinylidene fluoride    ionic liquid
发布日期:  2022-05-24
ZTFLH:  TQ317  
基金资助: 教育部长江学者创新团队计划(IRT1187);国家自然科学基金-河南省联合(U1704149);河南省科技攻关(202102210292);河南省高等学校重点科研项目(20A530005)
通讯作者:  djiguo@zzuli.edu.cn   
作者简介:  张晓蝶,郑州轻工业大学硕士研究生。2015年9月至2019年6月,在郑州航空工业管理学院获得学士学位。2019年9月至今,在郑州轻工业大学攻读硕士学位。
郭东杰,教授,博士,2006年在肖守军教授的指导下获得南京大学材料化学博士学位,他在2008—2009年和2016—2017年,在美国科罗拉多大学博尔德分校机械工程系进行博士后研究,随后作访问学者。2008年,在南京航空航天大学担任副研究员,2021年任郑州轻工业大学教授,专门从事IPMC、DEP等电活性聚合物(EAP)的制造和应用研究。
引用本文:    
张晓蝶, 丁井鲜, 黄建建, 王放, 马丽, 郭东杰. PEDOT夹心PVDF多孔膜的电驱动性能研究[J]. 材料导报, 2022, 36(10): 21010222-6.
ZHANG Xiaodie, DING Jingxian, HUANG Jianjian, WANG Fang, MA Li, GUO Dongjie. Electromechanical Response of Porous PVDF Film Sandwiched by PEDOT Electrodes. Materials Reports, 2022, 36(10): 21010222-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010222  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21010222
1 Wang H S, Cho J, Song D S, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21998.
2 Guo D J, Han Y B, Huang J J, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 2386.
3 Fukushima T, Asaka K, Kosaka A, et al. Angewandte Chemie Internatio-nal Edition, 2005, 44(16), 2410.
4 Wu G, Hu Y, Liu Y, et al. Nature Communications, 2015, 6(3), 7258.
5 Lee S, Park H C, Kim K J. Smart Materials and Structures, 2005, 14(6), 1363.
6 Cheong H R, Nguyen N T, Khaw M K, et al. Lab on a Chip, 2018, 18(20), 3207.
7 Carrico J D, Hermans T, Kim K J, et al. Scientific Reports, 2019, 9(2), 819.
8 Acome E, Mitchell S K, Morrissey T G, et al. Science, 2018, 359(6371), 61.
9 Wang Y J, Ru J, Zhao D X. Materials Reports A: Review Papers, 2017, 31(8), 24 (in Chinese).
王延杰, 汝杰, 赵东旭, 等.材料导报:综述篇, 2017, 31(8), 24.
10 Guo D J, Liu R, Cheng Y, et al. ACS Applied Materials & Interfaces, 2015, 7(9), 5480.
11 Liu Y, Ghaffari M, Zhao R, et al. Macromolecules, 2012, 45(12), 5128.
12 Jiang T, Liu L X, Lian H Q. Materials Reports A: Review Papers, 2011, 25(9), 22 (in Chinese).
姜涛, 柳乐仙, 连慧琴.材料导报:综述篇, 2011, 25(9), 22.
13 Bennett M D, Leo D J. Sensors and Actuators A: Physical, 2004, 115(1), 79.
14 Ji J, Liu F, Hashim N A, et al. Reactive & Functional Polymers, 2015, 86, 134.
15 Guo D J, Wang L, Wang X J, et al. Sensors and Actuators B: Chemical, 2020, 305, 127488.
16 Liu J Q, Li Y F, Liang B, et al. IOP Conference Series: Materials Science and Engineering, 2019, 493(1), 12048.
17 Wang H M, Tang G Q, Jin S S, et al. Acta Chimica Sinica, 2007, 65(21), 2454.
18 Rajagopalan M, Oh I K. ACS Nano. 2011, 5, 2248.
19 Shahinpoor M, Bar-cohen Y, Simpson J O, et al. Smart Materials and Structures, 1998, 7, 251.
20 Neves M, Damasceno J, Junior O, et al. Synthetic Metals, 2021, 272, 116657.
21 Xu Y, Jia Y, Liu P, et al. Chemical Engineering Journal, 2021, 404, 126552.
22 Rasouli H, Naji L, Hosseini M G. New Journal of Chemistry, 2018, 42(14), 12104.
23 Lee S W, Kim J W, Kim Y H, et al. Macromolecular Research, 2013, 21(6), 699.
24 Huang J X, Yang H J, Chen M, et al. Polymer Testing, 2017, 59, 212.
25 Chen P, Hou Z C, Lu X F. Journal of Radiation Research and Radiation Processing, 2011, 29(3), 134 (in Chinese).
陈鹏, 侯铮迟, 陆晓峰. 辐射研究与辐射工艺学报, 2011, 29(3), 134.
26 Wang X H, Song F, Qian D, et al. Chemical Engineering Journal, 2018, 349, 588.
27 Martins P, Costa C M, Ferreira J, et al. Journal of Physical Chemistry B, 2012, 116(2), 794.
28 Wang T, Li H, Wang F, et al. Polymer Chemistry, 2011, 2(8), 1688.
[1] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[2] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[3] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[4] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[5] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[6] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[7] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[8] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[9] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[10] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[11] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[12] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[13] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[14] 李文龙, 薛屏. 微生物燃料电池分隔材料的研究新进展[J]. 《材料导报》期刊社, 2018, 32(7): 1065-1072.
[15] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed