Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4116-4124    https://doi.org/10.11896/j.issn.1005-023X.2018.23.013
  无机非金属及其复合材料 |
离子液体在有机光电转换器件中的应用研究进展
李博, 徐晓婷, 郑雪晴
浙江工业大学理学院,杭州 310023
Progress in the Application of Ionic Liquids in Organic Photoelectric Conversion Devices
LI Bo, XU Xiaoting, ZHENG Xueqing
College of Science, Zhejiang University of Technology, Hangzhou 310023
下载:  全 文 ( PDF ) ( 1519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,离子液体因具有不易挥发、性质稳定、透光性好、导电率高、可设计性,以及易于在界面处形成双电层等物理化学性质,而展现出广阔的应用潜力和前景,逐渐成为国际科学研究的前沿和热点之一。其中,将离子液体应用于染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)、钙钛矿太阳能电池和有机光电探测器等有机光电转换器件的研究备受关注。
在有机光电转换器件中,离子液体在染料敏化太阳能电池方面的应用最为广泛且完善。高效DSSCs主要是基于有机溶剂的液态电解质结,但有机溶剂在带来较高光电转换效率的同时,其本身存在的易挥发汽化、光热稳定性差等缺点,导致DSSCs的器件寿命与长期稳定性受到影响,离子液体的引入能有效解决以上问题。此外,离子液体还以电子传输层以及界面修饰层的形式引入,具有高电荷迁移率、低功函数以及高稳定性等优点,能在一定程度上改善器件的短路电流、填充因子和光电转换效率等。因此,离子液体成为在DSSCs的实际应用中兼具性价比高、封装难度低、性能好、稳定性高四大优点的辅助材料。在钙钛矿太阳能电池方面,离子液体的低功函数和高电子迁移率以及一些特殊性质如钝化反应、黏度效应等,都能够实现对电子萃取率、电荷转移电阻、钙钛矿结晶情况等方面的控制以满足实际设计要求,进而有助于钙钛矿太阳能电池的光电转换效率、填充因子等性能指标不同程度的提升。在有机光电探测器方面,引入的离子液体能促使在与之接触的界面处形成双电层,双电层的形成及离子液体的高导电率使得入射光不必照射有机光电探测器上下电极的重叠区域仍旧可以产生较大的光电流输出,从而可以有效摆脱有机光电探测器对电极材料透光性要求的局限性。同时双电层的形成还将促进有机光电探测器工作层中的电荷分离,进一步提高有机光电探测器的响应率。
本文主要从染料敏化太阳能电池、钙钛矿太阳能电池、有机光电探测器三个方面,综述了离子液体在有机光电转换器件中的国内外应用研究进展,就离子液体对提升有机光电转换效率及其实现器件新功能的工作机理进行了详细分析,并对其未来的应用研究方向进行了展望,为今后进一步设计出更适合有机光电转换领域应用的离子液体提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李博
徐晓婷
郑雪晴
关键词:  离子液体  光电转换器件  有机  太阳能电池  光电探测器    
Abstract: In recent years, ionic liquids have shown wide application potential and prospects because of their physical and chemical properties, such as non-volatile, stability of properties, favorable transmittance, high conductivity, designability, and easy to form electric double layers at the interface. Accordingly, ionic liquids have gradually become one of the frontier and hot spots in international scientific research. Among them, the applications of ionic liquids in organic optoelectronic conversion devices, including dye-sensitized solar cells, perovskite solar cells and organic photodetectors have attracted numerous attention over the world.
In the organic photoelectric conversion devices, the application of ionic liquids in dye-sensitized solar cells is the most extensive and perfect. The high efficiency of dye-sensitized solar cells is primarily depended on liquid electrolyte junctions in organic solvents. Nevertheless, the high photoelectric conversion efficiency benefited from organic solvents is usually accompanied by volatile vaporization, poor photothermal stability, which badly affected the lifetime and long-term stability of dye-sensitized solar cells devices. While the introduction of ionic liquids can effectively solve these problems. In addition, ionic liquids are introduced in the form of electron transport layers and interfacial modification layers, bringing the advantages of high charge mobility, low power function and high stability, which contribute to improving the short-circuit current, filling factor and photoelectric conversion efficiency to a certain extent. As a result, ionic liquids have been recognized as the auxiliary materials with high cost performance ratio, low encapsulation difficulty, excellent performance and good stability in practical application of dye-sensitized solar cells. In perovskite solar cells, the low power function and high electron mobility of ionic liquids and some special properties like passivation reaction, viscosity effect can realize the control of electron extraction rate, charge transfer resistance, perovskite crystallization, so as to meet the design requirements in practice, and further help to improve the photoelectric conversion efficiency and filling factor of perovskite solar cells. Regarding to organic photodetectors, the introduction of ionic liquids can result in the formation of electric double layers at the interface. The formation of electric double layers and the high conductivity of ionic liquids make it possible to produce large photocurrent outputs without the need to illuminate the overlapping region of the upper and lower electrodes of the organic photodetectors. Therefore, it can effectively get rid of the limitation of organic photodetectors on the transmittance of electrode materials, meanwhile, the formation of electric double layers will also promote the charge separation in the working layer of the organic photodetectors, thus further enhance the response rate of the organic photodetectors.
In terms of dye-sensitized solar cells, perovskite solar cells and organic photodetectors, this article reviews the research progress in the application of ionic liquids in organic photoelectric conversion devices at home and abroad. The mechanism of ionic liquids for improving the efficiency of organic photoelectronic conversion and realizing the new function of the devices is analyzed and expounded in detail. The future application and research directions of ionic liquids are proposed, for the sake of providing reference for further design of ionic liquids that are more suitable for the application of organic optoelectronic conversion field in the future.
Key words:  ionic liquid    photoelectric conversion device    organic    solar cell    photodetector
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TB322  
基金资助: 浙江省自然科学基金(LY14F040003)
作者简介:  李博:男,1975年生,博士,副教授,主要从事有机光电器件及光电检测方面的研究 E-mail:libo@zjut.edu.cn
引用本文:    
李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
LI Bo, XU Xiaoting, ZHENG Xueqing. Progress in the Application of Ionic Liquids in Organic Photoelectric Conversion Devices. Materials Reports, 2018, 32(23): 4116-4124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.013  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4116
1 Ana Dominguezvidal, Nina Kaun, Maria Jose Ayora-Cañada, et al. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy[J].Journal of Physical Chemistry B,2007,111(17):4446.
2 Wei F Y.Crystal structure, electrochemical capability and application of ionic liquids[D]. Nanning: Guangxi University,2007(in Chinese).
韦风云. 离子液体的晶体结构、电化学性质及应用[D].南宁:广西大学,2007.
3 Liao F, Fan S T, Deng Y L, et al.First-principle calculations of mechanical properties of Al2Cu, Al2CuMg and MgZn2 intermetallics in high strength aluminum alloys[J].Journal of Aeronautical Materials,2016,36(6):1(in Chinese).
廖飞,范世通,邓运来,等.高强铝合金中间相Al2Cu,Al2CuMg和MgZn2性能的第一性原理计算[J].航空材料学报,2016,36(6):1.
4 Quarmby I C, Osteryoung R A.Latent acidity in buffered chloroaluminate ionic liquids[J].Journal of the American Chemical Society,2002,116(6):2649.
5 Wang J Y, Zhao F Y, Liu Y M, et al.Study on surface tension of a series of 1-alkyl-3-methylimidazolium room temperature ionic liquids[J].Acta Chimica Sinica,2007,65(15):1443(in Chinese).
王建英,赵风云,刘玉敏,等.1-烷基-3-甲基咪唑系列室温离子液体表面张力的研究[J].化学学报,2007,65(15):1443.
6 Chen X W, Bao Z H.New applications of room temperature ionic liquids[J].Speciality Petrochemicals,2006,23(2):60(in Chinese).
陈晓伟,包宗宏.室温离子液体的应用进展[J].精细石油化工,2006,23(2):60.
7 Peter Wasserscheid, Wilhelm Keim.Ionic liquids—New “solutions” for transition metal catalysis[J].Angewandte Chemie International Edition,2000,39(21):3772.
8 Welton T.Room-temperature ionic liquids. Solvents for synthesis and catalysis[J].Chemical Reviews,1999,30(46):2071.
9 Álvaro Péreo-Salado Kamps, Airk Tuma, Xia J Z, et al. Solubility of CO2 in the ionic liquid [bmim][PF6][J].Journal of Chemical & Engineering Data,2003,48(3):746.
10 Wang W Y.Research on the properties of the dye sensitized solar cell based on the binary ionic liquid electrolyte[D].Nanjing:Nanjing University of Posts and Telecommunications,2016(in Chinese).
汪午阳. 二元离子液体染料敏化太阳能电池的性能研究[D].南京:南京邮电大学,2016.
11 Zhang X Q.Progress in TiO2 thin-film for dye-sensitized solar cell[J].Chinese Journal of Rare Metals,2014,38(5):928(in Chinese).
张秀清. 用于染料敏化太阳电池的TiO2薄膜材料研究进展[J].稀有金属,2014,38(5):928.
12 Melton T J, Joyce J, Maloy J T, et al.Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts[J].Journal of the Electrochemical Society,1990,137(12):3865.
13 Zhan W S, Pan S, Wang Q, et al.A comparison of indoline dyes photosensitizers in dye-sensitized solar cell[J].Acta Physico-Chimica Sinica,2009,28(10):78(in Chinese).
詹卫伸,潘石,王乔,等.二氢吲哚染料用于染料敏化太阳能电池光敏剂的比较[J].物理化学学报,2009,28(10):78.
14 Wu Z S.The synthesis of cyclic urea/thiourea functionalized triphenylamine-based dyes and application for high-performance dye-sensitized solar cells[D].Xi’an: Shaanxi Normal University,2014(in Chinese).
伍致生. 环状脲/硫脲功能化三苯胺类有机光敏染料的合成及其在染料敏化太阳能电池中的应用[D].西安:陕西师范大学,2014.
15 Wang W J, Yang Y, Guo X Y, et al.A review: Quasi-solid state phlymer electrolytes for dye-sensitized solar cell[J].Chemistry Bulletin,2011,74(2):144(in Chinese).
王惟嘉,杨英,郭学益,等.准固态聚合物电解质在染料敏化太阳能电池中的应用[J].化学通报,2011,74(2):144.
16 Papageorgiou N, Athanassov Y, Armand M, et al.The performance and stability of ambient temperature molten salts for solar cell applications[J].Journal of the Electrochemical Society,1996,143(10):3099.
17 Shi D, Pootrakulchote N, Li R, et al.New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes[J].Journal of Physical Chemistry C,2008,112(44):17046.
18 Bonhôte P, Dias A P, Armand M, et al.Hydrophobic, highly conductive ambient-temperature molten salts[J].Inorganic Chemistry,1998,37(1):166.
19 Wang P, Zakeeruddin S M, Exnar I, et al.High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J].Chemical Communications,2002,24(24):2972.
20 Mohmeyer N, Kuang D, Wang P, et al.An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells[J].Journal of Materials Chemistry,2006,16(29):2978.
21 Xiang W C, Zhou S H, Xiong Y, et al.Polymer electrolyte using in situ quanternization for all solid-state dye-sensitized solar cells[J].Polymers for Advanced Technologies,2010,20(6):519.
22 Wang G, Wang L, Zhuo S P, et al.An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells[J].Chemical Communications,2011,47(9):2700.
23 Fang Y Y, Zhang J B, Zhou X W, et al.“Soggy sand” electrolyte based on COOH-functionalized silica nanoparticles for dye-sensitized solar cells[J].Electrochemistry Communications,2012,16(1):10.
24 Maheswari D, Venkatachalam P.Enhancing the performance of dye-sensitized solar cells based on organic dye sensitized TiO2 nanoparticles/nanowires composite photoanodes with ionic liquid electrolyte[J].Measurement,2015,60:146.
25 Yu W, Huang L, Yang D, et al.Efficiency exceeding 10% for inverted polymer solar cells with ZnO/ionic liquid combined cathode interfacial layer[J].Journal of Materials Chemistry A,2015,3(20):10660.
26 Tran V H, Khan R, Lee I H, et al.Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells[J].Solar Energy Materials & Solar Cells,2017,179:260.
27 Denizalti S, Ali A K, et al.Dye-sensitized solar cells using ionic li-quids as redox mediator[J].Chemical Physics Letters,2018,691:373.
28 Ren Z W, Zhou J X, Zhang Y K, et al.Strategies for high perfor-mance perovskite/crystalline silicon four-terminal tandem solar cells[J].Solar Energy Materials & Solar Cells,2018,179:36.
29 Seo Ji-Youn, Matsui T, Luo J, et al.Ionic liquid control crystal growth to enhance planar Perovskite Solar cells efficiency[J].Advanced Energy Materials,2016,6(20):1600767.
30 Wu Q L, Zhou W R, Liu Q, et al.Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells[J].ACS Applied Materials & Interfaces,2016,8(50):34464.
31 Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, et al.A fluorene-terminated hole-transporting material for highly efficient and stable pe-rovskite solar cells[J].Nature Energy,2018,3:682.
32 Yang D, Yang R X, Ren X D, et al.Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J].Advanced Materials,2016,28(26):5206.
33 Huang X, Guo H, Wang K, et al.Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells[J].Organic Electronics,2017,41:42.
34 Shahiduzzaman M, Yamamoto K, Furumoto Y, et al.Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells[J].Organic Electro-nics,2017,48:147.
35 Zhang Y, Fei Z F, Gao P, et al.A strategy to produce high efficiency, high stability perovskite solar cells using functionalized ionic liquid-dopants[J].Advanced Materials,2017,29(36):1702157.
36 Chu W J, Yang J Y, Jiang Q H, et al.Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process[J].Applied Surface Science,2018,440:1116.
37 Chen P, Zhang Y, Du J L, et al.Global control of CH3NH3PbI3 formation with multifunctional ionic liquid for perovskite hybrid photovoltaics[J].Journal of Physical Chemistry C,2018,122:10699.
38 Zheng X, Yu W, Priya S.Interfacial charge-transfer engineering by ionic liquid for high performance planar CH3NH3PbBr3 solar cells[J].Journal of Energy Chemistry,2017,27:748.
39 Zhao L P, Wang Z, Dong X D, et al.Effect of ionic liquid on the performance of perovskite solar cells[J].Chinese Journal of Applied Chemistry,2018,35(2):216(in Chinese).
赵利萍,王震,董献堆,等.离子液体对钙钛矿太阳能电池性能的影响[J].应用化学,2018,35(2):216.
40 Zhang W Y, Ren Z Q, Guo Y, et al.Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid[J].Electrochimica Acta,2018,268:539.
41 Kim J Y, Lee K, Coates N E, et al.Efficient tandem polymer solar cells fabricated by all-solution processing[J].Science,2007,317:222.
42 Peumans P, Uchida S, Forrest S R, et al.Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J].Nature,2003,425:158.
43 Li R H, Meng W M, Peng Y Q, et al.Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact[J].Acta Physica Sinica,2010,59(3):2126(in Chinese).
李荣华,孟卫民,彭应全,等.阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究[J].物理学报,2010,59(3):2126.
44 Zhuo Z L, Zhang F J, Xu X W, et al.Photovoltaic performance improvement of P3HT:PCBM polymer solar cells by annealing treatment[J].Acta Physico-Chimica Sinica,2011,27(4):875(in Chinese).
卓祖亮,张福俊,许晓伟,等.退火处理提高P3HT:PCBM聚合物太阳能电池光伏性能[J].物理化学学报,2011,27(4):875.
45 Misra R, McCarthy M, Hebard A F. Electric field gating with ionic liquids[J].Applied Physics Letter,2007,90:052905.
46 Petach T, Reich K V, Zhang X, et al.Disorder from the bulk ionic liquid in electric double layer transistors[J].ACS Nano,2017,11(8):8395.
47 Dalgleish S, Reissig L, Hu L, et al.Factors affecting the stability and performance of ionic liquid-based planar transient photodetectors[J].Langmuir,2015,31(18):5235.
48 Hu L G, Liu X, Dalgleish S, et al.Organic optoelectronic interfaces with anomalous transient photocurrent[J].Journal of Materials Chemistry C,2015,3(20):5122.
49 Hu L G, Dalgleish S, Matsushita M M, et al.Storage of an electric field for photocurrent generation in ferroelectric-functionalized orga-nic devices[J].Nature Communications,2014,5(2):3279.
50 Li B, Noda Y, Hu L, et al.Highly efficient organic optoelectronic conversion induced by electric double layers in ionic liquids[J].Applied Physics Letter,2012,100:163304-1.
51 Li B, Dalgleish S, Miyoshi Y, et al.Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices[J].Applied Physics Letter,2012,101(17):173302-1.
52 Granqvist C G, Hultåker A.Transparent and conducting ITO films: New developments and applications[J].Thin Solid Films,2002,411:1.
53 Hu X W.Development of transparent conductive film production technology[J].Print Today,2012(8):60(in Chinese).
胡旭伟. 透明导电薄膜制作技术发展[J].今日印刷,2012(8):60.
54 Na S I, Kim S S, Jo J, et al.Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes[J].Advanced Materials,2008,20:4061.
55 Zhou Y H, Cheun H, Choi S, et al.Indium tin oxide-free and metal-free semitransparent organic solar cells[J].Applied Physics Letter,2010,97:153304.
56 Acro L G D, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics[J].ACS Nano,2010,4:2865.
57 Jo G, Na S I, Oh S H, et al.Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure[J].Applied Physics Letter,2010,97:213301.
58 Gebeyebu D, Maennig B, Drechsel J, et al.Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends[J].Solar Energy Materials & Solar Cells,2003,79:81.
59 Hoppe H, Sariciftci N S.Organic solar cells: An overview[J].Journal of Materials Research,2004,19(7):1924.
60 Thompson B C, Fréchet J M J. Polymer-fullerene composite solar cells[J].Angewandte Chemie International Edition,2008,47:58.
61 Tada A, Geng Y F, Wei Q S, et al.Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices[J].Nature Mate-rials,2011,10:450.
62 Clarke T M, Durrant J R.Charge photogeneration in organic solar cells[J].Chemical Reviews,2010,110:6736.
63 Helgesen M, Søndergaard R, Krebs F C.Advanced materials and processes for polymer solar cell devices[J].Journal of Materials Research,2010,20:36.
64 Mohite A, Chakraborty S, Gopinath P, et al.Displacement current detection of photoconduction in carbon nanotubes[J].Applied Physics Letter,2005,86:061114.
65 Fukuma T, Umeda K, Kobayashi K, et al.Experimental study on energy dissipation induced by displacement current in non-contact aomic force microscopy imaging of molecular thin films[J].Japanese Journal of Applied Physics,2002,41:4903.
66 Fedorov M V, Kornyshev A A.Towards understanding the structure and capacitance of electrical double layer in ionic liquids[J].Electrochimica Acta,2008,53:6835.
67 Itoi H, Nishihara H, Kogure T, et al.Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor[J].Journal of American Chemical Society,2011,133:1165.
68 Fedorov M V, Kornyshev A A.Ionic liquid near a charged wall: Structure and capacitance of electrical double layer[J].The Journal of Physical Chemistry B,2008,112:11868.
69 Skinner B, Chen T R, Loth M S, et al.Theory of volumetric capacitance of an electric double-layer supercapacitor[J].Physics Reviews E,2011,83:056102.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 韦学玉, 杨晓凡, 白炳莲, 徐晓平, 李济源, 刘志刚. 对氟离子呈现状态和比色响应的有机凝胶的研究进展[J]. 材料导报, 2019, 33(9): 1583-1594.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[8] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[9] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[10] 吴敏, 吴丹萍, 常兆峰, 许燕, 潘波. BPCA分子标志物法对土壤体系中生物炭性质的描述[J]. 材料导报, 2019, 33(3): 536-540.
[11] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[12] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[13] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[14] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[15] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed